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Abstract

SuperCDMS is a direct-detection dark matter (DM) experiment that uses
cryogenically cooled germanium and silicon detectors to search for interac-
tions between DM particles and detector nuclei, and in this thesis I describe
my contributions to the experiment.

I start with a brief review of DM and motivate the possibility of its de-
tection in underground laboratories with sensitive detectors, and I review
the SuperCDMS detector fundamentals. Then I focus on detector develop-
ment for the future generation of the experiment, which will deploy an array
of detectors at SNOLAB in Sudbury, Canada. Specifically I describe char-
acterization of prototype detectors from surface facility testing, and discuss
measurements of critical values that determine the detectors’ sensitivity to
DM particles, such as the baseline resolution and the phonon collection ef-
ficiency. I also describe analysis techniques developed to measure intrinsic
detector noise in a high radiation environment such as a surface test facility.

In the final chapters I describe a DM search analysis using four months
of data from operation of SuperCDMS detectors in the Soudan Mine in
northern Minnesota. I discuss how a particular detector operating mode,
called CDMSlite, lowers the energy threshold of the detectors in order to
improve the sensitivity to low-mass DM particles. I also present new analysis
techniques that optimize the sensitivity to low-mass DM particles, including
noise discrimination with multivariate classifiers, instrumental background
modeling, and a profile likelihood signal and background fitting approach.
In this analysis we set an upper limit on the DM-nucleon scattering cross
section in germanium that is a factor of 2.5 improvement over the previous
CDMSlite result for a DM mass that is five times the proton rest mass.
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Lay Summary

It has been well established through astrophysical observations that there
is a form of matter that we cannot see (“dark matter”) that is five times
more abundant than ordinary matter (i.e. stars, planets, dust, etc.) in the
universe. Through gravity, dark matter is responsible for the formation of
most galaxies, and in that sense we owe our existence to it, but little is
known about its character. Leading theories posit that it consists of a halo
of particles surrounding most galaxies, and in this model many thousands of
dark matter particles stream through the Earth every second with low inter-
action rates with normal matter. In this thesis I describe my contributions
to an experiment designed to detect the rare collisions between dark matter
particles and detector material. In an analysis of data from the experiment,
I rule out smaller interaction rates between dark matter and these detectors
than previous analyses.

iv



Preface

Chapter 1 and 2 contain numerous citations to recognize the body of
work of others upon which a thesis such as this is built. These contribu-
tions include the establishment of the WIMP dark matter paradigm with
contributions dating back to the 1920s, as well as the development of CDMS
detectors dating back to the early 1990s. These contributions of others are
discussed in order to set the stage for the later chapters.
Chapter 3 is based on detector characterization work carried out at the
University of California, Berkeley under the supervision of Professor Matt
Pyle and research scientist Bruno Serfass. The derivations presented in this
chapter resulted from conversations with Matt Pyle. Bruno Serfass assisted
greatly with software issues that arose when operating the detectors and
analyzing the data. Nicholas Zobrist (now a graduate student at University
of California, Santa Barbara) took on the majority of the work required
to maintain stable operation of the dilution refrigerator for the 1–2 week
intervals during which we tested a series of detectors. The data analysis
presented in this chapter is my own.
Chapter 4 and 5 are based on an analysis that has been submitted for
publication. I was the lead author and responsible for a significant por-
tion of the analysis presented, and co-led the coordination of the analysis
effort with D’Ann Barker. We co-chaired weekly working group meetings.
Major analysis contributions came from D’Ann Barker and Ryan Under-
wood. The “Background Models” section (Sec. 5.1) is largely adapted from
the manuscript and is based on work carried out by D’Ann Barker. Ryan
Underwood carried out the majority of the work in the “Fiducial Volume”
section, with conceptual contributions from Wolfgang Rau and some tech-
nical contributions from myself. Eleanor Fascione, Dan Jardin, and Andrew
Scarff also contributed to the data analysis. Rob Calkins, Scott Oser, and
Wolfgang Rau supervised the analysis. As the lead author I contributed
significantly to the manuscript composition and ushered it through internal
collaboration review as well as through journal peer review.
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Chapter 1

Detection of Particle Dark
Matter

1.1 Early Evidence

In 1933 Fritz Zwicky calculated the mass of the Coma galaxy cluster by
way of the virial theorem, using the velocity dispersion of galaxies from
the measurements taken by Hubble and Humason [1], and found a mass-to-
luminosity ratio of roughly 500, significantly higher than expected for galaxy
clusters [2]. Three years later Sinclair Smith performed a similar analysis
of the Virgo galaxy cluster and observed a significant discrepancy, by a
factor of about 200, between the expected mass per galaxy from luminosity
measurements and his calculation of the mass per galaxy [3]. The term
“dark matter” was being used in the literature at this point, but it was not
thought of in today’s paradigm, with Smith asserting that the discrepancy
was due to uniformly distributed or low luminosity internebular material [4].

After Zwicky and Smith, more accurate measurements were made of
the mass of galaxies, many of which were based on the rotational speeds of
nearby galaxies. At high galactic radii within which the majority of luminous
matter is enclosed, if all the mass in the galaxy were luminous then Newton’s
and Gauss’ laws predict the rotational speed of orbital bodies around the
galactic center to be:

v(r) =
√
GMl

√
1

r
(1.1)

where Ml is the mass of the luminous matter. Horace Babcock in 1939
measured rotational speeds of the Andromeda galaxy (M31) and found rising
speeds out to distances beyond where the luminous matter was enclosed (100
arc minutes), in tension with Eq. 1.1. He attributed the measurements to
large amounts of non-luminous matter in the outer part of the galaxy or to
new dynamics that would account for the high rotational speeds without a
new mass component[4, 6].

We now know definitively that the rotation speed of objects around the
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1.1. Early Evidence

Figure 1.1: (left) The hydrogen surface densities (azimuthally averaged) for
five galaxies and (right) the rotation galactic rotation curves. The bars un-
der the galaxy names indicate the spatial resolution of the measurements.
R80 corresponds to the galactic radius containing 80% of the Hydrogen den-
sity determined from the 21 cm emission. Plot copied from Ref. [5], with
permission. Measurements were performed by Rogstad and Shostak in 1972
from the Owens Valley Radio Observatory using 21cm observations.
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1.2. Galaxy Clusters

galaxy does not fall off as r−1/2. In the 1960s and 70s, using the Doppler
shift of the Hα (optical) hydrogen emission line, Vera Rubin and Kent Ford
measured the rotation speeds of hydrogen in M31, showing that the speeds
are roughly constant at large radius from the galactic center [7]. Subsequent
measurements of a host of spiral galaxies by Rubin, Ford, and Thonnard also
showed flat rotation curves [8]. Outside of the optical band, Rogstad and
Shostak analyzed the rotation curves from five galaxies using hydrogen’s
21cm photon emission [5]. The flat rotation curves measured for these five
galaxies are shown in Fig. 1.1.

To explain the flat rotation curves, if we instead modeled mass in the
galaxy as a spherically symmetric distribution that varies with distance,
M(r), the constant stellar rotational velocity at large distances given by

v = C =
√
GM(r)

√
1
r , can be explained by an enclosed mass that varies

linearly with the distance from the center:

M(r) ∝ r.

Therefore the enclosed mass has a density proportional to the inverse square
of the distance from the galactic center, ρ(r) ∝ 1

r2
. Most of this matter must

be dark because the luminous mass density falls off much more rapidly. To
account for this missing matter, the leading model is a spherically symmetric
“halo” of dark matter distributed throughout our galaxy and other galaxies,
interacting gravitationally and making up the majority of mass in the galaxy
and the universe.

1.2 Galaxy Clusters

Measurements of galaxy clusters since the work of Zwicky and Smith have
provided additional evidence for dark matter and important information re-
garding the composition of dark matter. Observations of galaxy clusters—
the largest gravitationally collapsed astrophysical structures—are particu-
larly powerful because different techniques can be used to make independent
measurements of their mass.

The Chandra Observatory measures the x-ray emission from the inter-
galactic gas of galaxy clusters. With the clusters’ gravitational potential
largely due to dark matter, their intergalactic gas gains kinetic energy and
heats to ∼ 108 K, and they are therefore among the brightest x-ray sources.
By measuring the x-rays, the temperature and pressure of the gas can be
computed. If the cluster is in equilibrium, the gravitational potential can be
computed under the good assumption that gravitational forces cancel with
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1.2. Galaxy Clusters

pressure forces. Recent publications matching models of the interstellar gas
and dark matter halo to Chandra Observatory data indicate that ordinary
matter makes up 12-15% of the total mass of the cluster [9].

In an independent measurement of the cluster mass, the Hubble Space
Telescope measures light from background objects that bends around the
massive structures. The total gravitational mass of the cluster is computed
by the strength of the gravitational lensing, which confirms that the majority
of gravitational mass of the clusters is not due to the luminous matter[10].

Figure 1.2: 1E 0657-56 ( c○ 2004 X-ray: NASA/CXC/CfA/M.Markevitch
et al.; Optical: NASA/STScI; Magellan/ U.Arizona/ D.Clowe et al.; Lensing
Map: NASA/STScI; ESO WFI; Magellan/ U.Arizona/ D.Clowe et al., by
permission) [11] [12] .

The “Bullet” Cluster is one of the most famous examples of the dark
matter making itself apparent in our universe. The Hubble Space Telescope
and Chandra Observatory have observed the collision of two galaxy clusters
and measured the distributions of both the gravitational matter measured
with strong gravitational lensing and luminous matter measured with x-ray
emission. As shown in Fig. 1.2, these two distributions are observed to have
separated. The luminous matter (pink) is superimposed on the distribution
of gravitational matter (i.e. predominantly dark matter) as measured by
lensing (purple). The two dark matter distributions have passed through
each other while the luminous distributions lag behind due to the impedance
of their collisions. The nearly non-interacting dark matter streams through
unimpeded.
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1.3. Big Bang Nucleosynthesis

1.3 Big Bang Nucleosynthesis

Measurement of the abundances of light elements produced in the early
universe was an important step in constraining the dark matter composi-
tion hypotheses. These measurements indicated, using a different set of
observables (and different systematics) than the measurements discussed in
Sec. 1.1 and 1.2, that the baryon density of the universe was significantly
smaller than the total matter component. These measurements not only
pointed to the existence of dark matter, but also indicated that dark matter
must be non-baryonic.

In the first minutes after the Big Bang the energy of photons dropped
below the binding energy of deuterium (2.2 MeV), allowing protons and
neutrons to fuse into deuterium (p + n → 2H + γ). Because both 3He
and 4He have higher binding energies than deuterium, subsequent reactions
produced those nuclei. The binding energies of nuclei in the A = 5−8 range
are lower than that of 4He, and so combined with the fact that particle
densities at this stage of the universe forbade 3-body interactions, light
nuclei production stopped (to first order) at 4He. Therefore, only 2H, 3He,
and 4He were produced in significant quantities in the early universe (with
small amounts of 7Li). The abundances of these nuclei are sensitive to the
baryon density in the early universe. For example, the efficiency of the
primary reaction that turns deuterium into helium, 2H + p → 3He + γ,
depends on the proton number density. Models of these nuclear processes
predict abundances shown as colored bands in Fig. 1.3, and show a strong
dependence on the baryon density.

The measurements of these abundances in today’s universe are compli-
cated by the fact that the high densities within stars do result in 3-body
interactions, allowing for nuclei production heavier than 4He. Measurements
of the deuterium abundance, made by observing high redshift quasars and
exploiting the difference in the absorption properties of deuterium to hydro-
gen, provide the best estimates for the baryon density [13]. This measure-
ment is shown by the smallest yellow box in Fig. 1.3. The baryon to photon
ratio of ∼6×10−10 translates to a ∼5% baryon mass-energy density of the
universe, which is significantly smaller than the mass density needed to ex-
plain galactic rotation curves and to explain measurements of the cosmic
microwave background, discussed next in Sec. 1.4.

5



1.3. Big Bang Nucleosynthesis

Figure 1.3: Y is the 4He mass fraction of all baryons. The blue, red, and
green bands are the modeled number densities of 2H, 3He, and 7Li, respec-
tively, relative to 1H as a function the baryon density. Yellow boxes show
measurements (95% CL) of the light element abundances; of note is that only
upper limits on 3He abundance have been made, and the measurements of
7Li are in slight tension with the model. The pink hatched band shows the
inferred baryon to photon ration from the 2H measurement, while the blue
hatched band shows the range indicated by CMB measurements. From [14]
with permission. 6



1.4. The Cosmic Microwave Background

Figure 1.4: CMB power spectrum predicted by a Λ-CDM cosmology (i.e. a
dark energy (69%) and cold dark matter (26%) dominated universe). Data
points in red are measurements by the Planck collaboration [15]. Power
spectrum of temperature fluctuations in the Cosmic Microwave Background
( c○ 2013 ESA/Planck, and the Planck collaboration, from Planck 2013 re-
sults. I. Overview of products and results, by permission).

1.4 The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) provides the most accurate mea-
surement of the fraction of the dark matter density of the universe. Approx-
imately 400,000 years after the Big Bang, the expanding universe cooled to
a point where it became energetically favorable for the plasma of protons
and electrons to fall out of equilibrium with photons and form neutral hy-
drogen. At this point of “recombination,” the universe became transparent
to the photons which make up the CMB radiation, which matches a black-
body spectrum with (currently) a temperature of 2.7 K. Slight differences, or
anisotropies, in this temperature across the sky, on the order of 100µK, have
been a rich source of cosmological information, including the most accurate
measure of the non-baryonic (dark matter) matter density in the universe.

Transforming the spatial anisotropies into spherical harmonics gives the
CMB power spectrum, or the variance of the spatial fluctuations as a func-
tion of angular scale. The acoustic peaks of the power spectrum show the
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1.5. Composition Hypotheses

angular scales at which the photons were slightly hotter and slightly colder
than average at recombination. The hotter overdensities are regions where
the photons, coupled to the baryonic matter up to the point of recombi-
nation, had clumped together because of gravitational wells into which the
baryonic matter was attracted.

Importantly for the case of the non-baryonic dark matter, the amplitude
of the peaks depends on the dark matter density in the universe. This is be-
cause the pressure of the photons coupled to the baryonic matter opposes the
formation of gravitational wells. In order to accurately model the location
and amplitude of the peaks, a decoupled non-baryonic matter component
must exist which continues to collapse regardless of the photon restoring
force. The photon pressure restoring force does set up an oscillation of the
baryon-photon plasma, which is highly sensitive to the non-baryonic matter
density, and which is imprinted on the CMB at last scattering in the form
of the peaks in the power spectrum [16]. With the CMB power spectrum we
are therefore able to determine the non-baryonic matter density. The CMB
power spectrum is sensitive to numerous other properties of the universe,
such as the dark energy fraction, and these cosmological parameters are fit
in a multidimensional space to the power spectrum. The best current mea-
surement of the cold dark matter density fraction of the universe is 26.8%
(with a 68.3% dark energy component) [17]. Reference [17] contains further
details on the power spectrum fitting, including discussion of the covariances
between cosmological parameters.

1.5 Composition Hypotheses

Despite overwhelming observational evidence that dark matter does exist,
very little is known about its composition. A number of theories have been
put forth.

In one effort to account for the dark matter, experiments searched for
hidden massive compact halo objects (MACHOs), such as black holes or
massive non-luminous planets. They looked for MACHOs in the Milky Way
by waiting for slight unexpected gravitational lensing of distant luminous
galaxies as a MACHO passed between us and the galaxy. These searches
ruled out the possibility of MACHOs constituting any more than 25% of
the Milky Way’s dark matter halo, and therefore disqualified them as the
primary dark matter candidate [18].

Most theories predict that non-baryonic particles make up dark matter
halos around galaxies, but still there exist many possibilities for the type of
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particle. If we assume that dark matter is non-baryonic, it is highly likely
that such dark matter is also non-relativistic, or “cold”, dark matter. Rel-
ativistic, or “hot”, dark matter conflicts with the accepted model of galaxy
formation [19]. Returning to the discussion of Sec. 1.4, had the dark mat-
ter been relativistic then its kinetic energy would have largely prevented its
gravitational collapse. However, the gravitational landscape at recombina-
tion is well understood, and not only is it imprinted on the CMB but it also
explains the formation of the dense small scale structures (galaxies) seen in
the universe today. That the majority of dark matter is cold rules out a
hot relativistic (neutrino-like) species from contributing substantially to the
26.8% dark matter component.

Theoretical models that predict new particles with these characteristics
include, but are not limited to, axions [20, 21] and WIMPs [22]. In the
following subsections we briefly review these and other candidates, with a
focus on candidates to which CDMS detectors are sensitive.

1.5.1 The WIMP Hypothesis

The SuperCDMS experiment, along with many competitor experiments,
searches for Weakly Interacting Massive Particles (WIMPs). The WIMP
hypothesis is intriguing because it fits into a parameter space supported by
supersymmetric (SUSY) theory as well as cosmology. A number of assump-
tions regarding matter in the early universe allow cosmologists to estimate
the WIMP cross section. First, WIMPs would have been constantly created
and annihilated until some critical point of the universe’s cooling where the
low temperature would prevent any further WIMP creation. Following this,
expansion of the universe would have made it exponentially unlikely that
a WIMP would collide with its antiparticle and annihilate [22]. This sec-
ond critical moment—when annihilation ceases—is known as thermal relic
“freeze out.” The particle abundance resulting from freeze out depends on
the WIMP annihilation cross section as shown in Fig. 1.5, with a detailed
derivation given in Chapter 3 of Ref. [16]. In order to account for the dark
matter in the universe, the WIMP annihilation cross section is estimated to
be roughly at the scale of the weak force where yet undiscovered particles
are expected to exist as postulated by SUSY [22].

This coincidence is what some refer to as the “WIMP miracle,” since
SUSY was initially proposed as a solution to other problems with the Stan-
dard Model of particle physics, but could naturally solve the dark matter
problem as well. SUSY adds particles to the Standard Model and the light-
est of these particles, the neutralino, could be the dark matter WIMP. This
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1.5. Composition Hypotheses

Figure 1.5: Number density of WIMPs in the Universe as a function of
time, where the relic density depends on the WIMP annihilation cross sec-
tion, σχχ̄ ( c○ NASA/IPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration, by per-
mission).
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convergence of SUSY and cosmology is the primary motivation behind the
WIMP hypothesis and has launched the dozens of experiments attempting
to detect WIMPs [22].

1.5.2 Axions

The axion was originally proposed as a solution to the strong charge parity
(CP) problem [20, 21] and has since become a leading light mass (10−5 to
10−2 eV) DM candidate. The strong CP problem refers to the observation
that there is no violation of CP-symmetry in quantum chromodynamics,
despite the fact that the theory contains CP-violation. One manifestation
of CP-violation would be an electric dipole moment in the neutron, but
no such moment has been observed and upper limits [23] have been placed
that are significantly lower than those näıvely expected from quantum chro-
modynamics. Peccei and Quinn [24] proposed a solution to the strong CP
problem that includes a new particle (the axion) that cancels out the quan-
tum chromodynamic effects that permit CP-violation.

Through interactions with standard model particles, axions would be
produced in stars and provide an additional process for the stars to shed en-
ergy. Models of these processes combined with stellar lifetime values predict
a 10−2 eV upper limit on the axion mass [25]. The axion can convert to two
photons, and terrestrial experiments search for this conversion in resonant
cavities threaded by a strong magnetic field [26].

1.5.3 Dark Sector Particles

The DM could be a new particle from a “dark sector” that does not interact
via the standard model force mediators. Dark sector theories in particular
postulate the existence of particles in the lower mass range (1–10 GeV/c2)
[27–29], whereas the SUSY WIMP favors higher masses. One dark sector
theory postulates a new force mediated by a dark photon, which can kine-
matically mix with the standard photon and therefore interact with stan-
dard model particles [27]. Interactions of such particles with protons can
be searched for in detectors nominally designed for WIMP detection (which
are discussed in Sec. 1.6.1).

A second class of dark sector models goes under the name of “asymmetric
dark matter,” and these models propose an asymmetry between the dark
matter and its antiparticle [30–32], analogous to the baryon/anti-baryon
asymmetry of the universe. Such models postulate the existence of DM par-
ticles in the 5–15 GeV/c2 mass range [32]. Many asymmetric DM models
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1.6. Dark Matter Detection

exist, some of which fit into the SUSY framework, and some of which are
motivated by new dark force mediators. It is not guaranteed that asymmet-
ric DM interacts with standard model particles, but interactions are possible
and could proceed via DM-proton scattering. In this case, again, detectors
nominally designed for WIMP detection would be sensitive to these interac-
tions [32].

1.6 Dark Matter Detection

1.6.1 Direct Detection

When DM WIMP particles interact in a detector on earth, the DM can lose
energy by colliding with electrons and nuclei in the detector material. The
amount of energy that the DM can lose is significantly greater for nuclei
than electrons (as described in more detail below), and so direct detection
experiments look for DM-nucleon recoils in terrestrial detectors and em-
ploy different targets (e.g. liquid argon, liquid xenon, germanium, silicon,
calcium tungstate), background rejection techniques, amplifiers, and/or en-
ergy thresholds. Direct detection experiments are optimized to certain DM
masses and cross sections based on their detector technology.

For a DM WIMP, the expected elastic scattering energy transfer to a
target particle is given by:

Erecoil = (
mχmT

mχ +mT
)2 v

2

mT
(1− cos(θχ)) (1.2)

where mχ is the WIMP mass, mT is the target particle’s mass, v is the
WIMP velocity, and θχ is the WIMP scattering angle.

The WIMP velocity is given by v and deserves brief discussion. In the
Standard Halo Model (SHM) the DM halo is isothermal and isotropic. The
phase space density for a DM particle in the halo, under these assumptions,
is given by Maxwell-Boltzmann statistics

f(~x,~v) = Cexp(−E(~x,~v)/kBT ) (1.3)

with an energy given by

E(~x,~v) =
1

2
mχ|~v|2 +mχΦ(~x) (1.4)

where Φ(~x) is the gravitational potential and C is a normalization constant.
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The velocity distribution function is calculated by integrating over the
spatial coordinates

f(~v) =

∫
d3~xf(~x,~v)

= Cexp(−mχv
2/2kBT )

∫
exp(−mχΦ(~x))d3~x

= C ′exp(−mχv
2/2kBT )

= C ′exp(−v2/2σ2
v)

(1.5)

where in the last step we have defined the DM velocity dispersion as σ2
v =

kBT/mχ. The velocity dispersion is related to the characteristic velocity
of the dark matter by σv =

√
1/2v0. Since DM particles moving too fast

will gravitationally escape the galaxy, f(~v) is generally truncated at the
escape velocity (vesc is taken to be 544 km/s in the SHM, as estimated from
high velocity stars [33]). Therefore, the final velocity distribution function
is given by

f(~v) =

{
C ′e(−v2/v20) v < vesc

0 v > vesc.
(1.6)

The characteristic velocity of the DM is not a constant as a function of radial
distance from the galactic center, and Ref. [34] shows that at radii compara-
ble to the Sun’s location, the characteristic velocity is approximately given
by the local circular velocity at the radius of the Sun’s orbit. Historically
a value of v0=220 km/s is used as estimated by galaxy surveys [35]. The
earth is moving through this halo with a velocity ~vE , the vector sum of the
sun’s circular and peculiar velocity as well as a small (6%) annual modu-
lation due to the earth’s orbital velocity around the sun. The SHM uses
vE = 232 km/s for the average velocity of the earth, and boosts the DM
velocity distribution into this frame with the transformation ~v → ~v + ~vE in
Eq. 1.6.

One key element of direct detection of elastic scatters is made clear from
Eq. 1.2—the WIMP cannot efficiently transfer energy to target components
that are much less massive than a nucleon. Consider the maximum en-
ergy transfer of a WIMP-electron collision (θχ → 180◦, mT ≈ me), giving
Erecoil ≈ 2mev

2 = 0.25eV. Signals of this magnitude are “in the noise”
projected for the even the lowest threshold next-generation dark matter ex-
periments, although through upgrades detector resolutions for the following
generation of experiments are projected to approach these values.
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1.6. Dark Matter Detection

Instead consider the maximum energy transfer of a WIMP-nucleon col-
lision where the dark matter particle is well matched kinematically to a Ge
nucleus target: (θχ → 180◦, mχ ≈ mT ≈ 72mp). In this case Erecoil ≈
(1/2)mT v

2 ≈ 16.5keV, which is certainly a detectable energy.
The local dark matter density is approximately ρdm = 0.3 GeV/cm3 [36].

Recent measurements of ρdm combine stellar kinematic data with simula-
tion to estimate the local galactic gravitational potential in the vicinity of
the Sun which is then converted to a dark matter density by subtracting
out the contribution from luminous matter [37]. The measurements are
prone to significant systematic uncertainties, though most measurements
are within 2σ of ρdm = 0.3 GeV/cm3, albeit with significant error bars [37].
Despite ever improving measurements of ρdm from improved stellar kine-
matic data and simulations, the DM direct detection community assumes
ρdm = 0.3 GeV/cm3 for consistency and in order to be able to compare DM
results between competing experiments and with previous results.

This density means that many DM particles stream through the detec-
tors every day, with lower mass DM particles generating a higher flux, and
direct detection experiments hope to measure this rate of DM events. The
expected differential scattering rate, as a function of Erecoil, is given by:

dR

dErecoil
=

ρdm

mTmχ

∫ ∞
vmin

v3f(v)

[
dσχT
dErecoil

(v,Erecoil)

]
dv

[
keV kg day

]−1

(1.7)
where dσχT /dErecoil is the differential cross section, vmin is the minimum
WIMP velocity in order to produce recoil energy Erecoil

1, and ρdm is the
local dark matter density [40].

Except for the differential cross section dσχT /dErecoil and the WIMP
mass, all the parameters of the differential scattering rate are estimated in
the SHM. The differential cross section clearly has large implications for the
detectability of WIMP particles. The total cross section could be the sum
of a spin-independent and spin-dependent term. As Witten and Goodman

1The revolution of the earth around the sun seasonally adds and subtracts from the
WIMP velocity relative to the earth, and detecting a seasonal variation in a possible
WIMP signal would be another sign that the signal is indeed the dark matter halo. A dif-
ferent direct detection experiment—the DAMA/LIBRA collaboration—claims that they
are seeing this annual modulation in their data and interpret this as a dark matter signal
[38]. As shown in Fig. 1.6, multiple other direct detection experiments exclude the DM
interpretation of the DAMA/LIBRA data. Additionally, the COSINE-100 experiment
searches for DM using the same target (sodium iodide) as DAMA/LIBRA to conduct a
model independent test of DAMA’s claim; COSINE-100 observes no signal above the ex-
pected background and is currently searching for evidence of an annual modulation signal
in their data [39].
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1.6. Dark Matter Detection

noted in their 1984 paper [41], the spin-independent term in the cross section
scales as the number of nucleons squared, which is sometimes referred to as
“coherent rate enhancement.” This effect significantly amplifies the spin-
independent term relative to the spin-dependent term, and therefore most
direct-detection experiments present their results as a sensitivity to the spin-
independent cross section and as a function of the dark matter mass mχ, as
shown in Fig. 1.6.

Spin-dependent interactions would occur if the DM particle has a non-
zero spin and the target nucleon has a non-zero spin, although the spin-
dependent interaction is more difficult to probe. This is not only because of
the lack of coherent rate enhancement, but also because of lack of dark mat-
ter nuclei targets with a large nuclear spin. The spin-dependent interaction
will cancel for DM scattering off of paired nucleons with equal magnitude
but opposite signed spins, and so experiments hoping to detect this inter-
action use light odd-proton or odd-neutron nuclei (e.g. 19F as used in the
PICASSO experiment [42]) in order to maximize the nuclear spin per unit
mass.

We compute the right hand side of Eq. 1.7, and integrate over the Erecoil
spectrum to obtain the total number of events expected for different targets
and different cross sections as a function of energy threshold. The results
are shown in Fig. 1.7. In the left plot we show a relatively light WIMP
(10 GeV/c2) with a cross section of σSI = 10−41 cm2, now ruled out at
the 90% confidence level by a number of experiments. In the right plot we
show a 100 GeV/c2 WIMP with a cross section of σSI = 10−45 cm2, close
to the 90% exclusion limit of the xenon-based dark matter searches [43–45].
As a rough reference, reading off from Fig. 1.7 (left), a recoil threshold of
6 keV gives a rate of 1/10 [events kg−1day−1]. CDMS II had roughly 5 kg
of detector bulk, translating to a rate of 0.5 events per day.

At these relatively low nuclear-recoil energies and low event rates, one
fundamental challenge to direct detection experiments is background dis-
crimination. One advantage is that the majority of backgrounds will scatter
off electrons in the detector bulk, and most direct detection technologies
have means to distinguish electron recoils from nuclear recoils and thus
reject background events, which is further discussed in Sec. 2.1.1. In addi-
tion, all direct detection experiments shield the detector as best as possible
to reduce the background rate. To shield from cosmic-ray muon-induced
neutron scattering in the detector, the detectors are operated underground
which reduces the muon flux with the rock overburden. The flux reduc-
tion for underground sites in which the CDMS detectors have operated is
shown in Fig. 1.8. In addition to being underground, the SuperCDMS cryo-
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1.6. Dark Matter Detection

Figure 1.6: Current (solid) and projected (dashed) 90% limits on the WIMP
mass vs. WIMP-nucleon cross section parameter space. The yellow shaded
region represents the DM cross section at which experiments will observe an
“irreducible” background from nuclear scattering neutrino events. At lower
DM mass, the background from solar neutrinos from 7Be and 8B reactions
dominate, whereas at higher DM mass atmospheric and the diffuse super-
novae neutrino background (DSNB) dominate. Figure from SuperCDMS
collaboration approved public plots.
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1.6. Dark Matter Detection

Figure 1.7: The expected WIMP event rate for the given mχ and spin-
independent cross section. σSI=10−41cm2 corresponds to roughly the cross
section reported by DAMA/LIBRA, CRESST, CDMS Si, and CoGent.
σSI=10−45cm2 corresponds to a cross section excluded only by results in
the last 2–3 years. Internal CDMS figure, from [46].

stat was surrounded by layers of shielding (polyethylene to block neutrons,
ancient lead2 to block γ-rays), and as a result the dominant source of back-
ground particles in the detector comes from radioactivity of the shielding
itself, other apparatus materials, and the detectors themselves. Finally, most
direct-detection experiments have the capacity to estimate the position of
an event in the detector, which is useful for fiducialization, or removing
background events that occur close to the surface of the detector (at the ex-
pense of removing that outer detector volume from the dark matter search
as well).

The above is in principle how CDMS and other direct detection exper-
iments hope to discover WIMPs. However, ever since the 1990s when the
first limits on WIMP cross sections were published by CDMS, no such rate
has been observed. There have been reported detections [38], but they have
not held up to further scrutiny and are not widely accepted by the com-

2Lead on Earth naturally contains some amount of 235U, which decays to a radioactive
type of lead, 210Pb, which has a half life of 22 years. Most of the uranium is removed
when the lead is first processed, and the 210Pb begins to decay which further purifies the
lead over time. In ancient lead almost all of the 210Pb has already decayed, resulting in
radioactive background rates for ancient lead that are ∼1000 times lower than non-ancient
lead.
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1.6. Dark Matter Detection

Figure 1.8: The depth of different underground sites, shown as muon flux on
the y-axis, and meters of water equivalent (mwe) on the x-axis, from different
generations of CDMS experiment. SUF stands for Stanford Underground
Facility.

munity. CDMS has gone through three generations of experiments: CDMS,
CDMS II, and SuperCDMS Soudan, and is now preparing for SuperCDMS
SNOLAB. Each generation of the experiment has increased the total de-
tector mass and implemented improved detector technology. In two of the
iterations the detectors were moved to a cosmogenically cleaner site (deeper)
and radiogenically cleaner environment. Meanwhile competitor experiments
made similar improvements and new detection technologies were developed
in order to address (1) a low rate of WIMP-nucleon collisions, and (2) back-
ground rejection.

1.6.2 Collider Production

DM particles could be produced in collisions of leptons and hadrons in high
energy colliders. Because the dark matter particles are stable and inter-
act negligibly with the detector, their production in a collision would be
observed as a missing transverse momentum.

Both of the general-purpose Large Hadron Collider detectors, ATLAS
and CMS, have searched for a DM-like missing momentum in collisions [47,
48]. The data have been consistent with expectations from Standard Model
processes and limits have been placed on the DM production rates. In a
highly model-dependent fashion, production limits can be converted to limits
in the DM-nucleon cross section vs. DM mass plane and be compared with
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Figure 1.9: Limits on the DM-nucleon scattering cross section, as a func-
tion of DM mass from the CMS (left) and ATLAS (right) experiments for
different sets of model assumptions. Figures from [47, 48].

direct-detection limits. These conversions are shown in Fig. 1.9. At high
DM mass, collider experiments are not as sensitive as the direct detection
detectors because they are limited by the energy available in the particle
collisions. At low DM mass by contrast, the collider experiments are more
sensitive than direct detection detectors because they are not as limited by
the low energy thresholds that dictate the mass reach of direct detection
experiments.

1.6.3 Fixed Target

Fixed target experiments hope to detect dark matter particles by first pro-
ducing them from proton beam collisions with a “fixed target,” and then
detecting the dark matter particles in a downstream detector. For example,
the MiniBooNE [49] experiment hopes to produce dark matter particles via
8 GeV/c2 proton collisions in steel, either by proton Bremsstrahlung or by
π0 or η meson (produced copiously in the proton beam interactions with the
steel) decay. MiniBoone searches for these dark matter production mech-
anisms from a “dark photon” kinematically mixing with standard model
particles (as mentioned in Sec. 1.5.3). Once the dark matter particles are
produced, their elastic nuclear collisions in a downstream detector could be
observed. The MiniBooNE detector consists of 818 tons of CH2 mineral
oil scintillator, and dark matter nuclear collisions would produce a proton
or neutron track that would generate a small, but detectable, amount of
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scintillation light. In 2018 new limits were placed on the kinematic mixing
amplitude for dark matter masses between 10 MeV/c2 and 1GeV/c2 [49].
Many other proposed and ongoing experiments plan similar studies, such as
T2K [50] and NOνA [51], and new efforts such as LDMX [52] and HPS [53].

1.6.4 Indirect Detection

Indirect detection efforts involve looking for signatures of DM interaction
with standard model particles in observable astrophysical objects. One sig-
nificant challenge in these efforts is accurately modeling of all other non-DM
astrophysical processes so that if a DM signal exists in the data it can be
correctly attributed as such at a high confidence level.

One channel by which to look for dark matter is its annihilation into
gamma rays, e.g. χχ̄ → γγ, where χ is a DM particle and χ̄ is an anti-
DM particle. Researchers look for gamma ray excesses in regions of the sky
where there is predicted to be a high DM density, such as the Milky Way
galactic center. The Fermi Large Area Telescope has observed an excess of
gamma rays (at roughly GeV energies) from the galactic center [54], and in
some publications this excess has been interpreted as consistent with anni-
hilation of 36–51 GeV/c2 DM particles [55]. Subsequent analyses [56, 57]
have found that models with unresolved point sources account for the excess
and are a better fit to the data, with high statistical significance. The un-
resolved point sources (e.g. millisecond pulsars) are predicted to generate a
gamma flux just below the current Fermi Large Area Telescope point source
detection threshold. Lowering of this threshold with future measurements
and detecting the point sources will provide additional information about
the processes creating the gamma rays in the galactic center.

Another indirect detection method is to look for neutrino excesses from
astrophysical bodies where DM particles would gravitationally accumulate,
where the probability of their annihilation is higher. One such body is the
Sun, and while most of the standard model annihilation products such as
gammas would be trapped by the Sun, the neutrinos would escape. Both
the IceCube [58] and Super-Kamiokande [59] experiments look for the spec-
trum of excess neutrinos, and with the analyses indicating that the data
are consistent with expected backgrounds they have placed limits on DM
annihilation in the Sun.
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1.7 Further Reading

While this chapter provides a broad overview of the evidence and search
for DM, for a deeper background there are numerous other review articles.
Reference [55] contains further discussion of the history of dark matter. Ref-
erence [60] reviews DM from an observational and theoretical perspective.
Reference [22] establishes and reviews the theoretical motivation for WIMP
DM. Reference [36] provides more detailed discussion of the DM rate and
energy spectrum expected in terrestrial detectors.
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Chapter 2

Detectors for the Cryogenic
Dark Matter Search

2.1 Semiconductor Detector Physics

The CDMS detectors consist of kilogram-scale cylindrically-shaped ultra-
pure germanium and silicon crystals. Germanium and silicon have good
charge transport properties and small band gaps, which are important for
a favorable detector response to a particle interaction in the detector, as
discussed in the following sections. In addition, the availability of both
germanium and silicon with low concentrations of radioactive contaminants
assists in minimizing the number of background events in the detector bulk,
which is critical for increasing sensitivity to a DM signal.

The CDMS detectors are operated at low temperatures (∼50 mK) at
which the germanium and silicon behave as insulators because the e−/h+

pairs are frozen out of the conduction band. The low temperature also de-
creases the heat capacity of the crystal and helps to lower the noise of the
readout electronics. When a particle (DM signal or background particle)
recoils in the germanium or silicon, it loses energy as it interacts with the
electrons and nuclei. For electrons and gammas (i.e. the dominant back-
grounds), it is kinematically favorable to interact with and lose energy to the
electrons in the detector material. Recoiling heavier particles (& 1 GeV/c2),
such as neutrons or DM WIMPs, find it kinematically efficient to impart sig-
nificant energy to nuclei in the detector as well as electrons. The detectors
exhibit a different response to nuclear recoils (NRs) versus electron recoils
(ERs), and historically this enabled discrimination between a DM signal
and background events. Because of the importance of these two interaction
types in the CDMS detectors, we now discuss some basic dynamics of these
two types of recoils.
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Ecreate Egap
Ge 3.0 0.74
Si 3.8 1.12

Table 2.1: Electron-hole pair creation energies (in eV) and bandgap energies
for germanium and silicon. Values from Ref. [62].

2.1.1 Electron Recoils

Electromagnetically-interacting background particles such as β and γ par-
ticles recoil off electrons in the detector bulk. For example, when a medium
energy γ-ray (10keV to 1MeV) passes through the detector bulk, it is likely
to interact with an electron via the photoelectric effect or by Compton scat-
tering [61]. A recoiling electron will lose energy by Coulomb interactions
with other electrons in the material, creating an electronic cascade. The
stopping lengths for keV-scale electrons in germanium and silicon are on
are the scale of µm and decrease for lower energy electrons, as shown in
Fig. 2.1. Because the stopping lengths are significantly smaller than the
length scale of the detector, all of the electron’s energy will be deposited
within the crystal.

In germanium, the energy to create an e−/h+ pair (Ecreate) is 3.0 eV.
This “ionization energy” is frequently also denoted as ε. Therefore, the elec-
tronic cascade from a fully absorbed 10keV γ-ray spreads its energy out by
ionizing e−/h+ pairs into the conduction band until the individual electrons
have insufficient energy to excite another electron, producing ∼3000 e−/h+

pairs in the detector. In general, for an electron recoil, the number of e−/h+

pairs is given by
Ne/h = Er/Ecreate = Er/ε (2.1)

where Er is the energy of the recoil.
With the e−/h+ pairs in the electronic cascade having on average 3.0 eV

of energy, they are unable to lose additional energy to other electrons. How-
ever, they have an energy Ecreate that is greater than the bandgap en-
ergy (Egap = 0.74 eV) in germanium. Therefore, the e−/h+ pairs relax
down to the bandgap energy and they shed energy as lattice vibrations (i.e.
phonons). The corresponding e−/h+ pair creation energies and bandgap
energies for silicon are shown in Table 2.1.

The values of Ecreate and Egap dictate the partitioning of the initial recoil
energy, of an electron recoil, between the e−/h+ pairs and the phonons.
Specifically, for germanium the fact that the e−/h+ pairs transfer all of their
energy to phonons as they relax from 3.0 to 0.74 eV means that the fraction
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Figure 2.1: Estimated energy vs. electron range in germanium and silicon,
based on the electron stopping power from Coulomb interactions. Figure
adapted from [61].

of original recoil energy that goes into phonon creation is 1− Egap/Ecreate,
or 3/4. For silicon this fraction is 7/10.

2.1.2 Nuclear Recoils

WIMP DM particles and neutrons recoil off germanium and silicon nuclei
in the detector bulk. Nuclear recoils are similar to electron recoils in many
ways; however, they differ most importantly in that a lower fraction of energy
goes into e−/h+ pairs. Lindhard theory, which models the propagation of
ions through semiconductors, serves as the basis for the following discussion
of semiconductor response to NRs [63–65].

When a nucleus recoils, it is capable of transferring energy to other
nuclei and other surrounding electrons. Nuclei are capable of this from
a purely kinematic standpoint, whereas electrons are not because of their
small mass [66]. The more even division of energy transfer to excitations of
electrons versus energy transfer to excitations of other nuclei is particularly
true for lower energy NRs (. 1 MeV in Ge), and these low energy recoils
are particularly relevant for low-mass DM interactions. The nuclei are freed
from the crystal lattice and excite other nuclei in a cascade separate from
the electron cascade. Once the nuclei’s kinetic energy drops below the lattice
binding energy, they have insufficient energy to excite other nuclei and they
lose their energy to phonon production. In contrast to the electronic cascade,
for nuclei there is no analogous Egap. Therefore, nuclear cascades are more
efficient than electron cascades in phonon production.

The derivations of the nuclear recoil energy partitioning between elec-
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trons and phonons are computationally intensive [63–65] and not repeated
here, but the Lindhard model provides a parametrization for the fraction of
the nuclear recoil energy that ends up in e−/h+ pairs. This fraction depends
on the energy of the nuclear recoil and is called the “ionization yield” (or
is sometimes referred to as the “quenching factor”). The ionization yield is
normalized so that the ionization yield of electron recoils is equal to 1. The
number of electron-hole pairs generated in a nuclear recoil can be written
as a function of the ionization yield (Y ) and the nuclear recoil energy (Enr)
as:

Ne/h = (Y (Enr)× Er)/ε. (2.2)

The ionization yield as a function of nuclear-recoil energy is predicted by
the Lindhard theory to be

Y (Enr) =
k · g(ε)

1 + kg(ε)
, (2.3)

where k = 0.133Z2/3A−1/2, g(ε) = 3ε0.15+0.7ε0.6+ε, ε = 11.5Enr(keV)Z−7/3,
and Z is the atomic number of the detector material [67]. Measurements
of Y in germanium are generally consistent with a small range of k values
approximately centered on the Lindhard model prediction of k = 0.159.
Figure 2.2 shows ionization yield (efficiency) as a function of energy for the
Lindhard model as well as measurements of the yield in germanium [68–72].
Section 5.2 discusses how the spread in experimental measurements is in-
corporated as a systematic uncertainty on k whenever using the Lindhard
model to determine how a nuclear recoil signal would appear in a CDMS
detector.

2.1.3 Yield Discrimination

The fact that NRs produce fewer e−/h+ pairs, and therefore a smaller ion-
ization signal, than ERs of the same recoil energy offers a powerful means of
discriminating between the two types of events. CDMS detectors measure
the ionization yield and the recoil energy for each event independently by
measuring the signal from both the e−/h+ and the phonons.

The expected difference in ionization yield between ERs and NRs is ob-
served in 133Ba and 252Cf calibration data that induce the two different
types of recoils, and is shown for a CDMS II detector3 in Fig. 2.3. The ER

3CDMS II was a generation of the experiment that operated from 2003-2009.
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Figure 2.2: Measurements of the ionization yield of nuclear recoil events, as
a function of energy. The prediction from the Lindhard model is overlaid.
From Ref. [73].

background events can be removed by only selecting events with lower ion-
ization yield. The upper (lower) ±2σ band in Fig. 2.3 defines the ER (NR)
region of parameters space, where the width of the bands is determined by
the energy resolution of the e−/h+ and phonon measurements. The resolu-
tion of these measurements worsens as the energy decreases, demonstrated
by the widening of the bands at lower energy, and the specifics of the mea-
surements is discussed in Sec. 2.2. Deciding where to “set the cut” in the
ionization yield vs. recoil energy plane is analysis- and detector-dependent
(some complications of which are discussed in Sec. 2.4), though the lower
±2σ bands shown in Fig. 2.3 depict a reasonable selection area for NRs.

2.1.4 Phonon Generation and Propagation

While Sec. 2.1.1 and 2.1.2 outlined electron and nuclear recoil dynamics,
special attention should be given to the different production mechanisms of
phonons in the detector. Phonon production and amplification is a partic-
ularly important aspect of the CDMSlite detector operation, which is the
focus of Chapter 4 of this thesis. Phonons are produced at three different
stages of an event, as depicted in Fig. 2.4, and we describe each stage in
more detail below.

The phonons produced in the initial electron or nuclear recoil cascade are
referred to as prompt phonons. These prompt phonons are high frequency
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Figure 2.3: Ionization yield versus recoil energy for calibration data, from
a CDMS II detector. The blue data was acquired during exposure of the
detector to a neutron 252Cf source producing primarily NRs, which accord-
ingly have a measured ionization yield less than 1. The red data is from
a 133Ba calibration, which primarily consists of ERs from γ interactions in
the detector. The black bands correspond to the ±2σ area in the ioniza-
tion yield vs. recoil energy plane where ERs and NRs occur. These bands
provide a visualization of the discrimination in this plane, and a cut in this
plane would be customized for a specific analysis (not necessarily at the ±2σ
level). From Ref. [46].

Figure 2.4: A simple depiction of an event in the detector and the resulting
prompt, NTL (or Luke), and recombination phonon production.
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(ν >1 THz) and their total energy is given by:

EP = Er −Ne/hEgap. (2.4)

Two frequency-dependent scattering processes—anharmonic decay (with a
scattering rate, ΓA, proportional to ν5) and isotope scattering (ΓB ∝ ν4)—
downconvert the initial high frequency phonons into lower frequency phonons.
The initial prompt phonons scatter with mean free paths that are much
smaller than the size of the detector, but once they reach frequencies of
ν ∼ 2 THz, the decrease in the scattering rates leads to intermediate mean
free paths of 10 µm–1 cm [74]. This intermediate propagation regime is re-
ferred to as “quasi-diffusive,” and the diffusive phonon ball that spreads out
from the recoil site carries information about the position of the event. Over
timescales of ∼100µs, the quasi-diffusive phonons continue to downconvert
to lower frequency, which in turn lowers the scattering rate and increases
the mean free path to length scales comparable to the size of the detector.
This propagation regime is referred to as ballistic, where the distribution of
phonons is homogenous through the detector and carries no position infor-
mation about the initial recoil. These phonons bounce around the detector,
reflecting off the detector surfaces, and are absorbed with some probability
when they strike an aluminum collection fin (discussed in Sec. 2.2.2).

A second production mechanism of phonons adds to the total phonon
signal after the initial electron or nuclear recoil. A voltage is applied across
the detector so that once an electron cascade has occurred, the excited
e−/h+ pairs do not de-excite back into valence states, but rather drift toward
the surfaces of the detector. As e−/h+ pairs drift across the crystal due to
the electric field, they quickly reach a terminal velocity in the crystal and
the additional work done on the carriers is transferred to the crystal lattice
in the form of Neganov-Trofimov-Luke (NTL) phonons [75, 76]. For a single
e−/h+ pair generated in the bulk of the detector, the work done to drift the
carriers to the surface of the detector by a distance d is given by

Wq = e|E|d = eVb, (2.5)

where e is the absolute value of the charge of the electron, E is the electric
field through the detector, and Vb is the voltage difference between the
surfaces of the detector4. With the number of e−/h+ pairs generated in an

4Non-uniformities in the electric field through the detectors, which complicate the
relationship given by Eq. 2.5, are discussed in Sec. 2.5.
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electron or nuclear recoil given by Eq. 2.1 and 2.2 respectively, the total
energy in the NTL phonons is given by

ENTL = eVbNe/h. (2.6)

A third class of phonons, called recombination phonons, also contribute
to the total phonon signal. Once the e−/h+ pairs reach the surface of the
detector they recombine at the charge collection electrodes (discussed in
Sec. 2.2.1) and the bandgap energy of the charge carriers is converted into
phonons. The energy of the recombination phonons is given by

ER = Egap ×Ne/h. (2.7)

There is some uncertainty in the detector’s collection efficiency for the re-
combination phonons. The possibility of reduced collection efficiency of this
type of phonon, relative to prompt and NTL phonons, is discussed further
in the context of bias scan calibration data (Appendix A.1).

The total phonon energy (Et) is nominally the sum of these three sources
(prompt, NTL, and recombination), given by

Et =
(
Er −Ne/hEgap

)
+
(
eVbNe/h

)
+
(
EgapNe/h

)
, (2.8)

which simplifies to

Et = Er

(
1 +

Y (Er) e Vb

ε

)
. (2.9)

In comparing the energy contribution of prompt (Eq. 2.4), NTL (Eq. 2.6),
and recombination (Eq. 2.7) phonons to the total phonon energy (Eq. 2.8),
notice that for low detector voltage Vb, the prompt and recombination
phonons dominate. However, once Vb = 3 volts the NTL phonon contri-
bution makes up half of the total phonon signal (for electron recoils). In
the CDMSlite operating regime of Vb = 75 volts, the NTL phonon energy
dominates the total energy, with 25 times more energy than the prompt and
recombination phonons.

2.2 Amplifiers

The detector surfaces are instrumented with sensors designed to measure the
e−/h+ pairs and phonon energy such that the energy, ionization yield, and
position of an event can be estimated as accurately as possible. As energy
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Figure 2.5: (top) A cartoon of the iZIP detector, with the individual phonon
channels labeled and uniquely colored. (bottom) A characteristic phonon
signal (i.e. pulse) from the bulk of an iZIP detector. The different pulse
shapes on the individual channels indicate that this event occurred close to
channel DS2 and CS1.
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CDMS SCDMS SCDMS
II Soudan Soudan

Detector ZIP iZIP CDMSlite

Mass per Detector [kg] 0.25 ∼0.62 ∼0.62

Number of Detectors 19 15 2

Phonon Channels per Det. 4 8 4

Phonon Energy Res. [eV] ∼180 ∼200 ∼70

Trigger Threshold [eV] ∼2000 ∼3000 ∼50

Charge Energy Res. [eV] ∼300 ∼450 –

Voltage between faces [V] 3 4 ∼70

Table 2.2: Detector amplifier specifications for different generations of the
germanium CDMS detectors. Adapted partially from Ref. [66].

resolutions improve, event discrimination improves and detector thresholds
can be lowered. As position resolutions improve, radioactive backgrounds
that occur near the surface of the detector can be removed more efficiently.
All of these factors improve sensitivity to a DM signal.

With R&D advances in sensor design, the resolutions of CDMS detec-
tors have improved over time, and different generations of CDMS detectors
employed different sensor layouts. Table 2.2 provides some information on
the amplifier specification for three different generations of CDMS detec-
tors. We specifically list the “iZIP” and “CDMSlite” style detectors used in
the SuperCDMS Soudan generation of the experiment, which we discuss in
more detail in Sec. 2.4 and Sec. 2.5. The DM search analysis described in
Chapter 4 of this thesis used the “CDMSlite” style detectors. We also list
the “ZIP” detector from the earlier CDMS II generation of the experiment.

2.2.1 Measuring the e−/h+ Energy

As described previously, a voltage is applied across the CDMS detectors so
that the e−/h+ pairs generated in an event do not recombine at the recoil
site but rather drift to the detector faces. As the ionization drifts to the sur-
face, image charges are induced on the top and bottom faces of the detector.
In CDMS II and SuperCDMS detectors, FET (Field Effect Transistor) am-
plifiers read out the image charge on the electrodes and amplify this signal as
a voltage that is further amplified by downstream amplifiers and eventually
digitized as a function of time by the data acquisition system.

In the CDMS II ZIP and SuperCDMS iZIP detectors, the voltage has
been tuned to the smallest possible value such that the e−/h+ pairs drift
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across the full length of the detector. If the potential difference between
detector faces is insufficiently high, the the e−/h+ pairs can trap in local
minima created by impurities in the crystal. At the same time, if the poten-
tial difference between detector faces is too high, the discrimination between
ERs and NRs suffers because the NTL phonons correlate the e−/h+ pair sig-
nal with the recoil phonon signal. Therefore, for ER vs. NR discrimination,
the optimal field was found to be ∼1 V/cm; for the CDMSlite approach
where the detector is operated at greater than 70 V, ER vs. NR discrimina-
tion is sacrificed in order to amplify the signal to achieve a lower threshold.

The propagation time of e−/h+ pairs to the surface of the detectors is
O(ns), the amplifier is “faster” than the propagation time (i.e. responds
to a signal on timescales < 1 ns), and the digitization rate of the amplifier
signal is 0.8 µs; therefore, the risetime of the e−/h+ pair signal is sharp and
contained in 1 or 2 time digitization bins. The falltime of the e−/h+ pair
signal is controlled by electronic components of the FET amplifier, and this
falltime was selected to be significantly longer than the charge collection
time; therefore the e−/h+ pair signal pulse assumes a relatively constant
shape, regardless of the location of the initial recoil [77].

While the pulse shape of the e−/h+ pair signal does not contain infor-
mation about the position of the event, the electrodes are divided up into a
number of channels, and the relative amplitude of the charge signal in those
channels does provide position information. For example, the iZIP detector
design employs a specific electrode channel layout to identify events that
occur near the surface of the detector, and this feature is described further
in Sec. 2.4.

2.2.2 Measuring the Phonon Energy

Phonon channels are instrumented on the detector faces, and each chan-
nel consists of thousands of Transition Edge Sensors (TESs). The TESs
are made from tungsten superconducting material whose transition temper-
atures (Tc) are tuned in fabrication to be at cryogenic temperatures, but
above the base temperature of the cryostat (i.e. the temperature of the de-
tectors). CDMS has fabricated TESs with Tc between 30mK and 200mK.
The voltage-biased TESs are held within the range of their transition such
that when heat from phonons reaches the sensors their resistance changes
rapidly and the current through them decreases. The current through the
TES is inductively coupled to a Superconducting Quantum Interference De-
vice (SQUID) which further amplifies the reduction in current. TESs are
amongst the most sensitive phonon amplifiers in existence, and they are
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at the heart of the CDMS detectors’ sensitivity to dark matter. The sensor
technology is reviewed in K. Irwin’s and G. Hilton’s review article (Ref. [78]).

Significantly more information than just the phonon energy is encoded in
the signal readout from the TESs. The prompt phonons in the first ∼100µs
impart more power on the sensors closest to the event. In contrast, the
NTL and ballistic phonons carry no position information, but do provide
the best measure of the event energy. The total absorption time of the
ballistic phonons is dependent on the aluminum collection fin coverage of
the detector, and this affects the falltime of the phonon signal.

The falltime of the phonon signal is roughly linearly dependent on the
area of the coverage, and the iZIP detector’s ∼5% coverage leads to rela-
tively long 750µs falltimes. The design decision of relatively low aluminum
coverage led to some advantageous detector response characteristics, namely
a straightforward method for separating event position from event energy
in the different time scales of the phonon pulse. Figure 2.5 offers a visual-
ization of the phonon propagation and collection in the iZIP detectors. A
position-dependent signal exists in the first ∼100µs of the pulses, from the
prompt phonons, with much larger signals on channel DS2 and CS1. Af-
ter ∼300µs the phonons are in the fully ballistic regime and impart equal
power to each phonon channel, as shown by the aligned “tails” of the pulses
at later times. We obtain an estimate of the event location by comparing
the energy deposited in the different phonon channels. The partitioning of
energy in the different channels allows a weighted average to determine the
x, y, and z coordinate of the initial event within the detector[77]. The pulse
shape of the phonon pulse (e.g. the peakiness of the pulse) in the individual
channels is also used to obtain more information about the event position
and energy. For example, in the analysis described in Sec. 4 of this thesis,
it was particularly important to use phonon pulse shape to estimate the
radial position of the event in the detector. This estimation is described in
Sec. 4.8.

2.3 Optimal Filter Event Reconstruction

Following the discussion of the techniques used to measure e−/h+ and
phonon energy, it is important to discuss the techniques used to fit and
extract information from the raw data. For every event, the raw data con-
sists of a time stream of data, read out for each channel, that has been
digitized from the amplifiers. We list the digitization rates and other im-
portant time and frequency values in Table 2.3. Because the analysis in this
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R (kHz) N T (ms) ∆f (Hz) ∆t (µs)

Charge 1250 2048 1.6384 ∼610.4 0.8
Phonon 625 4096 6.5536 ∼152.6 1.6

Table 2.3: Important time and frequency values for charge (e−/h+) and
phonon amplifier digitizers from SuperCDMS Soudan. R, N , T , ∆f , ∆t
refer respectively to the digitization rate, the number of bins in the read
out time stream, the time length of the read out time stream, the lowest
resolvable frequency (1/T ), and the time length of one digitization bin.

thesis focuses on the SuperCDMS Soudan generation of the experiment, we
list the digitization rates used in that generation, though the digitization
rates do not change much between generations.

After the amplifier signals are digitized and saved, we use fitting algo-
rithms to extract information from these raw data. For example, for the
raw data pulse in Fig. 2.6 (left), we would like to estimate the amplitude of
the pulse, the time at which the pulse occurs, the “peakiness” of the first
∼500µs of the pulse, as well as a χ2 parameter that indicates the goodness
of fit. We primarily rely on three different types of “optimal filter” (OF)
algorithms to fit the raw data pulses and extract these pieces of information.

2.3.1 Simple 1D Optimal Filter

In this section we explain the basics of optimal filter (OF) theory. Using
Fig. 2.6 for visualization, the OF is a fit of a template (red) to the data
(blue) to determine the amplitude and start time (i.e. delay) of the pulse in
the data. The OF is truly the optimal algorithm to determine the amplitude
and delay under a set of assumptions: (1) the template perfectly describes
the shape of the underlying pulse in the data, and (2) the noise is a Gaussian
random process whose power spectral density (PSD) is known. Even when
these two characteristics aren’t strictly realized in the real data, the optimal
filter fits perform well.

For Gaussian random noise, the frequency components of the noise are
uncorrelated. This is why it is beneficial to perform the fit in the frequency
domain—an equivalent fit in the time domain would require accounting all
covariances between the time domain data points. The optimal filter per-
forms the fit in the frequency domain where each frequency can be weighted
by the signal-to-noise ratio, effectively extracting the signal from the noise
to get the best estimate of amplitude and delay. We will use Jeff Filippini’s
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Figure 2.6: (left) An example simulated pulse with the template (normalized
to the best fit amplitude as given by the optimal fit). The template is
also left-right aligned with the best fit time delay as given by the optimal
fit. (right) The frequency domain representation (magnitude only) of the
template, noise (PSD), and optimal filter.

notation from Appendix A of his thesis, where A is the template, S is the
signal, and J is the noise PSD [77]. A discussion of how to calculate the
noise PSD is provided in Sec. 3.2. Additionally, the n subscript represents
the Fourier index, and Ã and S̃ are the Fourier transforms of the template
and signal, respectively.

The χ2 for the fit of the signal amplitude, a, is given by:

χ2(a) =
N∑
n

|S̃n − Ãn|2

Jn
(2.10)

and the value of a that minimizes this χ2(â) can be solved for analytically
and is given by

â =
∑
n

Ã∗nS̃n
Jn

/∑
n

|Ãn|2

Jn
. (2.11)

Typically, as suggested by the χ2 in Eq. 2.10, the optimal filter is thought of
in the context of a fit to a pulse; however, Eq. 2.11 shows that the optimal
filter can also be thought of applying a filter to the data. The denominator
of Eq. 2.11 is simply a normalization constant (that is, it is independent of
the data S̃n), and so the numerator is the application of a Fourier domain
filter φ̃, given by

φ̃n =
Ã∗n
Jn
, (2.12)
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to the Fourier transform of the signal. A visualization of the amplitude of
this filter is shown in Fig. 2.6 (right), where it is clear that any particularly
noisy frequency (1.2 kHz in this mock example) is deweighted in the optimal
filter φ̃n.

The best fit amplitude of the signal, given by a, and the time offset or
delay, given by t0, are obtained by minimizing the following χ2:

χ2(a, t0) =
N∑
n

|S̃n − ae−2πit0fnÃn|2

Jn
(2.13)

which has used the fact that a shift in the time domain (A(t − t0)) corre-
sponds to a phase rotation in the frequency domain (Ã(f)e−2πit0f ). This
2D χ2 can be minimized analytically, and therefore OFs can be performed
efficiently, with the limiting computational step being a fast Fourier trans-
form [77].

We frequently refer to best fit quantities from the 1D OF algorithm with
the “OF” suffix. For example, “ptOF” refers to the energy of the total
phonon pulse (the sum of the phonon pulses on all the detector channels)
as estimated by the fitted amplitude from the standard 1D OF algorithm.

2.3.2 Non-Stationary Optimal Filter

In the previous section, we described how the OF formalism was only optimal
if the template perfectly described the underlying shape of the pulse in
the data. However, in Sec. 2.4, we described the position-dependent pulse
shapes in the iZIP detectors. The non-stationary optimal filter improves
the energy resolution of the 1D OF algorithm by treating the pulse shape
non-uniformity as a source of non-Gaussian, non-stationary noise5. The
insight of treating the position dependence of the signal as noise came from
M. Pyle [79]. The non-uniform pulse shape of 10 keV events in the CDMSlite
Run 3 detector is shown in Fig. 2.7 (left) with the residuals shown in Fig. 2.7
(right). The position-dependent pulse shape variation noise between bin
500 and 600 is clearly highly correlated across time and frequencies. This
introduces a complication because, in considering the non-stationary noise,
the frequency domain no longer exhibits the convenient noise orthogonality
assumed in Eq. 2.16 for a 1D optimal filter. Therefore the non-stationary

5The term “non-stationary” describes a type of noise whose variance changes in time.
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Figure 2.7: (left) Example 10keV total phonon pulses with the OF tem-
plate overlaid in blue. (right) The residuals (phonon pulse − template)
showing that the position-dependent part of the pulse can be treated as a
non-stationary source of noise.

OF algorithm promotes the noise PSD J to a matrix Ṽ:

χ2(a, t0) =
∑
f,f ′

(S̃∗(f)− aÃ∗(f)e2πit0f )(Ṽ(f, f ′)−1)(S̃(f ′)− aÃ(f ′)e−2πit0f ′).

(2.14)
and the covariance between frequency modes is included when this χ2 is
minimized.

The covariance matrix Ṽ is determined using the Fourier transforms of
the pulse residuals (the phonon pulse minus the best fit phonon template)
shown in Fig. 2.7. The complete non-stationary optimal filter algorithm
also accounts for the fact that the magnitude of the stationary noise is
independent of the pulse energy but the non-stationary noise increases as a
function of the pulse energy, and therefore the off-diagonal components of Ṽ
undergo a magnitude scaling as a function of the pulse energy. The details
of this implementation are beyond the scope of this discussion, and further
details can be found in Ref. [80].

We frequently refer to best fit quantities from the non-stationary OF
with the “NF” suffix. For example, “ptNF” refers to the energy of the total
phonon pulse as estimated by the non-stationary OF algorithm.
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2.3.3 Two Template Optimal Filter

In contrast to the position-dependent deweighting approach of the non-
stationary OF, the two-template OF seeks to fit the position-dependent
part of the pulse with two templates and then use the best template fit
amplitudes and delays to extract enhanced energy and position information
about the event. Motivated by the prompt vs. ballistic phonon propagation
dynamics discussed in Sec. 2, the two template OF posits that the signal is
a linear superposition of two different pulses each with different time con-
stants. A “fast” template (with a fast falltime) is used in addition to the
standard “slow” template, such that we can describe the signal pulse as

S(t) = a1A1(t− t0) + a2A2(t− t0) + n(t) (2.15)

where the noise term n(t) is modeled as Gaussian noise. The slow template
(A1) is identical to that used in the 1D OF and the non-stationary OF. Then
the signal is fit with the fast and slow template, and Fig. 2.8 shows examples
of such fits. Computationally this is relatively straightforward, where the
χ2 rewritten with new index j=1,2 for the two templates is

χ2(a1, a2, t0) =
N∑
n

|S̃n − a1e
−2πit0fnÃ1,n − a2e

−2πit0fnÃ2,n|2

Jn
(2.16)

and the χ2 is minimized for t0 and the two amplitudes, a1 and a2.
We frequently refer to best fit quantities from the two template OF with

the “2T” suffix.

2.3.4 Use of Different OF Algorithms

For the Run 3 analysis, based on the analysis task being performed, we
use the parameter(s) derived from one of the three different OF algorithms.
The different optimal filters used for the different analysis tasks is given
in Table 2.4. After applying the corrections discussed in Sec. 4.4.1, the
energy resolution of the non-stationary OF is superior to that of the other
two algorithms, and therefore we use the non-stationary OF algorithm for
energy estimates. As discussed in Sec. 4.8, the parameters derived from the
two template OF are superior to other OFs for determining the position of
the event in the detector. Information from the standard 1D OF is used to
distinguish good events from instrumental background events.
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Figure 2.8: (top)An example of the 2 template fit to data, where the prompt
signal is modeled by the fast template and the ballistic signal is modeled by
the slow template. (bottom) An example of the 2 template fit performed on
the 4 individual phonon channels for a single event on a CDMSlite detector.
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OF Type Primary Use

simple 1D instrumental background discrim.
non-stationary energy estimate
two template position estimate

Table 2.4: The primary use of the three different OF algorithms.

Figure 2.9: The iZIP design with interleaved charge electrodes (±2V ) and
phonon rails (0V). Used with permission, from [81].

2.4 iZIP Interleaved Design

The CDMS II detectors suffered primarily from one design flaw. The ion-
ization from electron recoils close to the detector surface was more prone to
trapping, which reduced the ionization yield of the event [81]. This reduced
ionization yield caused surface electron recoils to mimic the nuclear recoil
signature and thus leak into the WIMP signal region. CDMS II sensitivities
were limited by this background [81].

A new detector (the iZIP) was designed to provide a solution to discrimi-
nate the surface event background. The ionization electrodes are interleaved
between the phonon sensors, as shown in Fig. 2.9, which allows readout of
both ionization and phonon energy on each detector face. Just as impor-
tantly, the phonon TES rails are maintained at 0V while the ionization
electrodes are kept at opposite potentials (±2V in standard operation) on
either face. This configuration produces a unique electric field within the
crystal (Fig. 2.10) wherein the ionization from surface events will largely be
collected on one side of the detector face. The CDMS and EDELWEISS
collaborations have shown that the interleaved design allows for robust re-
jection of surface events. An analysis cut on asymmetric charge collection
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Figure 2.10: (left) The electric field and potential lines produced from the
phonon rails (yellow) and charge electrodes (green). Notice that the unique
surface E-field extends ∼1mm into the crystal and therefore surface events
within this margin should exhibit asymmetric charge collection. (right) Data
from iZIP detector T3Z1 showing surface event discrimination (discussion
in main text). Internal CDMS figure, used with permission, from [81].

on side 1 vs. side 2 of the iZIP rejects the surface events.
Figure 2.10 (right) shows the ionization yield vs. recoil energy for events

from 900 hours of exposure of a Soudan iZIP detector denoted as T3Z1 (the
top detector in tower 3) to a 210Pb source. The 210Pb source was found, as
expected, to produce ∼130 surface electron recoils per hour via beta decay.
These events exhibit reduced ionization yield and fail the symmetric charge
cut. They populate the region above the 2σ nuclear recoil band and below
ionization yields of ∼1. The events below the germanium nuclear recoil band
but also failing the symmetric charge cut are surface events from recoiling
206Pb nuclei (the end product of the 210Pb decay). The colored blue dots are
events that pass the symmetric charge and accordingly show large ionization
yield corresponding to bulk electron recoils. Out of the 90,000 events in this
plot, two outliers exist that pass the charge symmetry cut but show low
ionization yield, which are blue and circled in black [81]. Overall, this study
demonstrates robust surface rejection capability of the iZIP.

The partitioning of channels on the iZIP, with 3 inner phonon channels
and an outer annulus channel as shown in Fig. 2.5, provides x, y, and z
information about the position of the event in the detector. The prompt
phonon signal leads to a larger pulse in the channel closest to the event and
a smaller pulse in the channel furthest from the event, and so we can use
a linear combination of the optimal filter amplitude from each channel to
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make phonon-based position estimates. We label the calibrated individual
channel amplitudes as pXOF, where X refers to channel A,B,C, D, or the
sum of the channels “sum”. Then with the channel layout as shown in
Fig. 2.11, each side of the iZIP (as indicated by the i index) provides an x
position estimate of

pxpartOFi =
cos(30◦) · pdOFi + cos(150◦) · pbOFi + cos(270◦) · pcOFi

psumOFi
(2.17)

and a y position estimate of

pypartOFi =
sin(30◦) · pdOFi + sin(150◦) · pbOFi + sin(270◦) · pcOFi

psumOFi
.

(2.18)
With the energy partitioned into only 3 channels, the resolution of these
partition estimates are never interpreted to be exact, and Fig. 2.11 demon-
strates this where the distribution of a set of events uniformly distributed
in the detector shows up as a “partition triangle,” instead of a circle. De-
spite the apparent crudeness of these partition estimates, they are useful for
checking the individual channel calibrations as well as identifying certain
electronic glitch or instrumental events that only cause a signal on one of
the channels (an example of this type of event is discussed in Sec. 4.6). A
z position estimate is given by the normalized difference in phonon energy
between the two sides:

pzpartOF =
psum1OF− psum2OF

psum1OF + psum2OF
. (2.19)

The additional fast template information from the two template OF fitting
has been used to enhance position information in particular for the devel-
opment of a radial parameter for single-sided iZIP readout, as discussed in
Sec. 4.8.

2.5 CDMSlite Detectors

In 2012, subsequent to the development of the iZIP, CDMS explored the op-
eration of an iZIP detector in an alternative configuration in which a higher
bias is applied across the detector. This higher detector voltage amplifies the
ionization signal by producing NTL phonons. Instead of biasing the detector
so that there is a 4 V potential difference between the faces, roughly −70 V
is applied. This custom biasing configuration required some modifications
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Figure 2.11: (left) The iZIP phonon channel partition on a single side, with
channel names labeled. (right) The px-py partition for uniformly distributed
events for an iZIP detector, where the triangular shape is due to the channel
layout as well as the partition variable definition (Eq. 2.17, 2.19).

to the electronics. A single side of the detector was biased to high voltage,
while the other side was grounded, and only the phonon channels and charge
channels on the grounded side were read out, as shown in Fig. 2.12.

The primary advantage of the CDMSlite mode is that the energy thresh-
old of the detectors is lowered. The NTL amplification increases the signal,
but not the noise, of events so that low energy recoils are able to be mea-
sured and reconstructed. Without NTL amplification these events would be
“buried” under readout noise. The advantage of a low detector threshold is
increased sensitivity to a low mass DM signal—kinematically recoils from
lighter DM particles deposit less energy in the detector. Figure 2.13 demon-
strates the shifting of the DM spectral shape to lower energy as a function
of DM mass and the importance of a low threshold. For example a detector
with a 2 keV nuclear recoil threshold has no sensitivity to 2 GeV/c2 DM-
nuclear recoil signal. The CDMSlite detectors have achieved thresholds of
∼0.5keVnr and are therefore sensitive to DM masses lower than 2 GeV/c2.

The primary disadvantage of the CDMSlite operating mode is that ER/NR
discrimination by using the partitioning of the energy between e−/h+ pairs
and phonons is no longer possible. This is the sacrifice that is made for the
lower detector threshold: as is clear from Eq. 2.6 and 2.9, a large detec-
tor voltage and correspondingly large production of NTL phonons creates a
strong correlation between the phonon signal and the e−/h+ pair signal for
both ERs and NRs. The result of this tradeoff between a lower threshold
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Figure 2.12: A rough schematic of the custom CDMSlite biasing electronics,
which shows that only a single side of the detector is read out while the other
side is biased using the “High Voltage” power supply (credit: R. Thakur
[83]).

and ER/NR discrimination is that the CDMSlite detectors have an “irre-
ducible” source of background from the ER events. The three CDMSlite
analyses have therefore been background limited. Each analysis has im-
proved upon the methods of the background reduction and modeling tech-
niques of the earlier runs, and despite the irreducible ER background some
CDMSlite analyses have produced world-leading limits for WIMP masses
less than 5 GeV/c2 at the time of publication [82].

The higher background rate in the CDMSlite detectors from ERs is re-
duced slightly in the low energy region of interest (ROI)—where the detec-
tors are most sensitive to low-mass DM—because ER background events are
amplified by a larger fraction than NR signal events. This is just a conse-
quence of the total phonon energy dependence on the ionization yield, as
shown in Eq. 2.9. The effect of the larger ER amplification is to “stretch”
ER backgrounds relative to the NR signals, which leads to the reduced ER
background rate in the ROI.

2.5.1 CDMSlite Biasing and Readout Configuration

The CDMSlite biasing configuration led to a number of non-ideal features
of the detector response relative to the iZIP operation. First, with half the
channels being read out, the signal to noise ratio was

√
2 worse relative

to what it could have been if all channels could be read out (assuming
uncorrelated noise between the channels). The single-sided readout also
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Figure 2.13: DM recoil spectra for different DM masses. The vertical lines
show example energy thresholds and demonstrate the importance of thresh-
old for sensitivity to a low mass DM-nuclear recoil scattering. The CDMSlite
detectors have achieved thresholds of ∼0.5keVnr. (credit: M. Pepin [84])

required the development of new estimates of the event position, which are
described in Sec. 4.8. In addition, the surface events that the iZIP’s unique
electric field was designed to remove could not be discriminated against
with the CDMSlite biasing configuration. We revisit the modeling of this
background in the CDMSlite detectors in Chapter 4.

The potentially most significant side effect of the CDMSlite biasing con-
figuration was the non-uniformity of the electric field in the detectors. The
non-uniformity arises because the materials surrounding the detector (e.g.
the housing) are grounded, and this distorts the electric field. One cross-
sectional slice of the detector is shown in Fig. 4.39, where near the detector
sidewall the ∆V can be smaller than the applied voltage. Therefore, for
events at high radii, the voltage drop experienced by an electron-hole pair
(and thus the NTL amplification) can be reduced such that the reconstructed
energy is significantly lower than for the same energy events at lower radii.
Section 4.8 explains how we model and remove these events when analyzing
data from the CDMSlite detector.

2.5.2 Calibration

We calibrate the CDMSlite detectors by activating the detector’s 70Ge with
a 252Cf neutron source. Activation of 70Ge by neutron capture produces
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Shell Energy [keV] Probability %

K 10.37 87.6
L 1.30 10.5
M 0.160 1.78
N 0.0015 0.14

Table 2.5: The energies and probabilities of electron capture for 71Ge. The
N -shell is included, though events from this EC have never been observed
in the CDMSlite detectors because of the low energy of this process.

71Ge, which decays by electron capture with a 11.43 day half-life [85]. This
process is given by:

70Ge + n→ 71Ge
71Ge + e→ 71Ga + νe

71Ga→ 71Ga + γ’s + e’s.

(2.20)

The γ’s + e’s represent the decay products from the electron recoil as 71Ga
reorders its electron shell into a stable state [67]. These decays produce
peaks at the K-, L-, and M -shell binding energies of 71Ga of 10.37, 1.30, and
0.16 keV, respectively [86]. The energy spectrum with K-, and L-, shell 71Ge
electron capture peaks is shown in Fig. 2.14. The most prominent peak is the
K-shell (1s orbital) peak. Decays from the lower energy peaks (L- and M -
shell peaks) occur at a lower rate because of smaller electron wavefunction-
nucleus overlap as well as electron binding energy factors. Formulae for
computing electron capture probabilities are computed in Ref. [87, 88], and
tabulated in Table 2.5. In the data we observe a ratio between K- and L-
shell peaks that is consistent with the expected relative rates.

The K-shell peak is used to calibrate the energy scale and correct for
any time and position variation in the detector response. The L- and M -
shell peaks are used to check the resulting energy scale for linearity. These
relatively low energy 71Ge activation peaks are critical for the energy scale
calibration of CDMSlite because, unlike the calibration lines from other
common calibration sources (133Ba and 252Cf), these events have sufficiently
low energy that they do not saturate the TESs in CDMSlite operation.

2.5.3 CDMSlite History: Run 1 and Run 2

The early commissioning work for CDMSlite surveyed the array of Super-
CDMS iZIP detectors (the array pictured in Fig. 4.4) to determine which
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Figure 2.14: The reconstructed total phonon energy of data with 71Ge elec-
tron capture peaks present. The colors label data taken at different detector
voltages, where the NTL amplification is apparent at the 30V, 50V, and 70V
data. The energy scale of the data at each voltage is calibrated so that the
K-shell peaks appear at the correct energy (i.e. the total phonon energy
given by Eq. 2.9), and additional details and insights gained from these
“voltage scan” data are discussed in Sec. A.1.

detector was best suited for CDMSlite operation. In this selection process,
one of the primary factors was the detector’s leakage current, which imposed
a voltage maximum below which the detector exhibited stable operation.
While the dominant mechanism of charge leakage in the iZIP detectors is
unknown (and is likely from a combination of mechanisms and variable be-
tween detectors), the basic idea is simple. When the voltage applied across
the detector is sufficiently high, a small current will start to flow across the
detector (i.e. the detector resistance is not infinite). This current could come
either from the interface of the detector or from charges in shallow-potential
impurity sites in the bulk of the detector (both of which are depicted in
Fig. 2.15), or from another source. The leakage charges will produce NTL
phonons that will be read out by the TES phonon amplifiers, and because
the leakage current is a quasi-Poissonian process, the leakage current creates
a source of noise in the phonon signal.

To first order, the leakage current in the tested iZIP detectors at Soudan
was found to be negligible until a certain “breakdown” voltage was reached.
This “breakdown” effect was also observed by P.N. Luke in one of the first
publications describing the NTL effect [76], as depicted in Fig. 2.15 (cen-
ter). The optimal operating voltage before breakdown in the iZIP detectors
was found to be ∼70 V. At these voltages, even relatively large detector
resistances, ∼1 PΩ, will produce leakage currents of 4×105 electrons/sec
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through the detector, which is a significant source of NTL phonon noise in
the phonon amplifier. Leakage current studies are discussed in more detail
in Sec. 3.2, and efforts to improve the detector leakage currents for future
CDMS detector are underway.

CDMSlite Run 1 operated the detector in the middle of the fifth tower,
as depicted in Fig. 4.4 and referred to as T5Z2, that had low leakage cur-
rents. The optimal voltage was found to be 69V, where above this voltage
the increase of a leakage current led to elevated noise. The detector was
operated for a relatively small period of time in 2012 and the DM search
live time totalled 6.25 kg-days. The analysis achieved an analysis thresh-
old of 170 keVee, and the limit placed on DM-nucleon cross section was
world-leading below 6 GeV/c2 DM mass at the time of publication[82].

CDMSlite Run 2 also operated the T5Z2 detector, but did so for signif-
icantly longer (70 kg-days over the course of 2014) and biased the detector
to 70V. A number of operational and analysis improvements were made in
this run. The three most significant operational improvements are described
in more detail below.

1. Pre-biasing. Run 1 observed that the noise in the minutes following
the HV biasing of a detector was higher relative to later times. At the
time the hypothesis for this excess noise was a higher leakage current
from trapped charge lying in shallow potentials, and the charges were
released once the detector was biased to high voltage; this hypothesis
is made in Appendix B of Ref. [83]. The period of higher noise was
observed even following the standard CDMS detector neutralization
procedure, which consists of exposing the detector to 1.31 eV LED
photons prior to operation. The motivation behind this neutralization
is to nullify any possible trapped charge, as described in Appendix H of
Ref. [89]. Unfortunately, there was no evidence that the neutralization
procedure eliminated the period of elevated noise following HV biasing.
It was found that this period of elevated noise could be shortened if
the detector voltage was raised above the operating voltage for ∼10
minutes, with the hypothesis that the higher voltage emptied the traps
more efficiently. The noise at later times, after the pre-bias period, was
also found to be lower than without the pre-bias. Fig. 2.15 bottom
shows the baseline RMS baseline noise with and without the pre-bias,
with the triangles (without pre-bias) showing a worse resolution than
the circles (with pre-bias).

During the second CDMSlite run, a 80V prebias was used for 10 min-
utes prior to the data taking with the detector biased at the 70V
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Figure 2.15: (top) A simple depiction of a regular event from a particle
interaction alongside two leakage events, one from the detector bulk and
one at the detector interface. (middle) From P. Luke’s publication, showing
the signal-to-noise benefits of NTL amplification up to ∼ 140V for the diode
detector described in Ref. [76]. (bottom) The baseline total phonon noise
RMS, labeled as “σOF [keVt ]” for the T5Z2 detector, showing an increase
in the noise above ∼ 60V and a severe worsening of the noise above ∼ 70V.
The triangles on this plot provide supplemental measurements of the noise
RMS without pre-biasing, demonstrating the effectiveness of the pre-bias
procedure.
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operating voltage6.

2. Accelerometer Vibration Readings. Analysis of the phonon sig-
nal power spectral density (PSD) (e.g. Fig. 4.9) on Soudan detectors
showed a broadband increase of noise at low frequencies, in contrast
with what is expected from fundamental TES noise, which does not in-
crease at low frequencies [78]. A subsequent series of studies at Soudan
was used to trace this LFN excess back to vibrational sources in the
Soudan setup [90]. Accelerometers were installed on the cryocooler,
known to be the most vibrationally active part of the experiment, and
event rates and LFN noise events were indeed found to be strongly
correlated with the periods of higher amplitude cryocooler vibrations.
In Run 2, the accelerometer readings were used to identify and isolate
periods of particularly high LFN. Then, particularly restrictive cuts
to discriminate against LFN induced events were used for those peri-
ods with high noise. The accelerometer readings are discussed in the
context of CDMSlite Run 3 in Sec. 4.3.2.

3. High Voltage Current Readings. The schematic diagram shown
in Fig. 2.16 depicts the HV biasing scheme of CDMSlite detectors,
where the schematic is simplified to not show any of the readout elec-
tronics. A critical part of the biasing scheme, which was added prior
to Run 2, is to continuously monitor the HV current (IHV ) in order to
determine the detector voltage relative to the applied voltage. With
an effectively infinite detector resistance, the nominal IHV would be
0 amps. However, parasitic resistance to ground (shown here as Rp >
1 GΩ), enables a small current (up to 120 nA) to be sourced by the HV
power supply. While the exact location of this parasitic resistance (i.e.
current leak) is unknown, there is strong evidence that the leak occurs
at a component of the room temperature electronics, potentially on
the CDMSlite HV biasing board.

A large bias resistor (Rb = 196 MΩ) is used to protect against signifi-
cant current flow into the cryostat in the case of a short, however that
large bias resistor also results in a significant decrease of the voltage
at the detector, even for small HV leakage currents. For example, a
120 nA leakage current results in a reduction of 24 V at the detector.
By reading the HV power supply current over the course of Run 2,
the voltage of the detector was calculated on an event-by-event basis.

6This same pre-bias procedure was used for CDMSlite Run 3, where a 85V was used as
the pre-bias point for the nominal 75V operating voltage, as described further in Sec. 4.
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Figure 2.16: A simple schematic of the CDMSlite biasing circuit.

The largest current measured in Run 2 was found to be 25nA, which
corresponds to a 6.5% difference between the applied voltage and the
detector voltage, which was corrected for in the analysis.7

In addition to the operational improvements made for CDMSlite Run 2,
numerous advances were also made during the analysis and described in
M. Pepin’s thesis [67].

One significant improvement was the development of a parameter that
identified events that occurred at high detector radii that would experience
reduced NTL amplification and therefore would be misreconstructed to a
lower energy [91]. Further improvements to the radial fiducial volume mod-
eling were made for the CDMSlite Run 3 analysis, and we save the more
detailed description of the radial parameter to that section of this thesis
(Sec. 4.8).

The CDMSlite Run 2 analysis also found environmental variables (e.g.
cryostat base temperature) and pulse-shape characteristics (e.g. pulse peak-
iness) that were correlated with the energy estimate of an event, and the
analysis corrected the energy scale with these variables and significantly im-
proved the resolution of the 252Cf calibration peaks. Because the Run 3
analysis employs similar energy corrections, we describe the details of the
procedure in Sec. 4.4.1 in the context of the Run 3 data.

7In contrast to Run 2, the largest current measured in Run 3 was 120nA, and the
current was significantly less stable throughout the run. The incorporation of the HV
current readings for the Run 3 analysis is discussed in Sec. 4.3.3.
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CDMSlite Run 1 and Run 2 DM Exclusion Limits: The
Optimum Interval Method

The operational and analysis improvement described above led to the Run 2
analysis achieving an analysis threshold of 0.056keVee. The addition of the
radial cut resulted in a final energy spectrum of events that was largely
understood, where different populations of events could be attributed to
known sources. The final Run 2 energy spectrum (converted to the nuclear
recoil energy) is shown in Fig. 2.17, where the two background peaks are
from M - and L-shell events. Despite an understanding of most background
sources, at the lowest energies (0–0.75 keVnr in Fig. 2.17) the ability to
distinguish a good event (caused by an energy deposition in the detector)
from an instrumental event (caused by a noise fluctuation that was large
enough to generate a trigger and read out the “event”) is diminished. The
Run 2 analysis cuts were defined in such a way that there was a significant
uncertainty about whether the events at the lowest energy were good events
or instrumental events.

Because of the potential leakage of instrumental events past the Run 2
analysis cuts, the analysis used a conservative technique for setting a DM
exclusion limit. The technique is called the Optimal Interval (OI) method
developed by S. Yellin [92, 93], and is succinctly described in the title of his
2002 paper: “Finding an Upper Limit in the Presence of Unknown Back-
ground.” The method does not require a background model, which sig-
nificantly simplifies the analysis. This is because, not only do background
models not need to be developed, but also instrumental events (for which
there is no physically motivated background model) can leak past the cuts
without serious consequences for the analysis.

The OI method works by interpreting all events as potential signal events
and then computing a signal size that is incompatible with the data at the
90% confidence level (CL). The method to quantify “incompatible” uses the
expected signal shape and the energy intervals between events. An example
interval in the CDMSlite Run 2 data is shown in Fig. 2.17. For the DM signal
shapes shown in Fig. 2.13, one can find an interval where the background
is low and where the signal shape is especially high that will be able to
optimally exclude the signal at some magnitude at 90% CL; this interval is
the “optimal interval.” The OI method finds this interval and applies an
appropriate trials factor for selecting an interval that gives the best limit
(i.e. it accounts for the “look elsewhere” effect).

This approach has a number advantages in that it does not require a
background model and is conservative, but one clear disadvantage is that
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Figure 2.17: The CDMSlite Run 2 energy spectrum after all cuts have been
applied, with the energy of the events measured by the non-stationary op-
timal filter, and converted to the nuclear recoil energy using a Lindhard
k parameter of 0.159. One of the energy intervals is highlighted between
events as a visualization of the energy intervals considered by the optimum
interval method. The optimal interval considers intervals between all pairs
of events (not necessarily adjacent pairs of events)

it cannot be used to discover a signal in the data; it can only be used to
set upper limits. The Run 1 and Run 2 analyses used this method and
therefore were not discovery-potential analyses, and in the Run 3 analysis
we explicitly address this shortcoming and employ a likelihood approach
to search for a signal in the dataset with discovery potential. Despite this
shortcoming of the OI method, at the time of publication, the Run 2 analysis
excluded new spin independent WIMP-nucleon parameter space between 1.6
and 5.5 GeV/c2. Both the Run 1 and Run 2 90% CL upper limits are shown
in Fig. 2.18.
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Figure 2.18: Spin-Independent WIMP-nucleon cross section 90% CL upper
limits from Run 1 and Run 2 (black solid with 95% uncertainty band) com-
pared to the other most sensitive results in this mass range (at the time
of publication of the Run 2 result): CRESST [94] below 1.6 GeV/c2 and
PandaX-II [43] above 4 GeV/c2.
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Chapter 3

Detector Characterization

3.1 Detector Resolution

The CDMS detectors’ energy resolution is one of the primary drivers of
their sensitivity to low-mass DM. This is because, as previously discussed
in Sec. 2.5 and depicted in Fig. 2.13, the expected signal from DM particles
of increasingly lower mass is higher at low energy. Better energy resolutions
allow the detectors to resolve lower energy recoils, effectively increasing the
detector’s exposure to a low-mass DM signal. In this chapter we focus
only on the resolution of the phonon amplifiers, as opposed to the e−/h+

amplifiers, because (1) the phonon amplifiers are intrinsically more sensitive
and therefore are the primary drivers of the sensitivity, and (2) the capacity
to improve the phonon amplifiers with new detector designs is greater and
therefore many CDMS R&D efforts are channeled in this direction.

Detector resolutions are typically thought of as varying as a function of
energy (e.g. see Sec. 5.1.1), but in this chapter we focus on the “baseline”
resolution because it is particularly important for the detector’s sensitivity
to the lowest energy recoils. The baseline resolution is a measurement of the
detector’s resolution at zero energy. Therefore, a lower baseline resolution
corresponds directly to a lower detector threshold and the ability of the
detector to observe lower energy recoils above the detector noise.

Detector research and development efforts seek to improve the baseline
resolution by either increasing the amplifier signal or decreasing the amplifier
noise. Efforts to increase the signal include NTL amplification (discussed
in Sec. 3.2) as well as increasing the phonon collection efficiency of the
amplifiers (measured in Sec. 3.1.4). Efforts to measure, understand, and
reduce the phonon noise are discussed in Sec. 3.1.2 and Sec. 3.2.

We use two complementary methods of calculating the baseline resolu-
tion. The simpler method is a direct measurement using a combination of
calibration data and noise data acquired from the detector. The more in-
volved method combines characterizations of the detector’s electronic and
phonon collection properties with resolution models from signal processing
and optimal filter theory [78]. The more detailed analysis of the baseline
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resolution indicates that the signal-to-noise ratio should be considered as a
function of frequency, which has implications for the preferred pulse shape,
or pulse bandwidth, as discussed in Sec. 3.1.5.

Below we compare the results from these two different detector base-
line resolution calculations for a number of prototype detectors fabricated
as part of the R&D effort for SuperCDMS SNOLAB. These detectors were
fabricated with lower TES transition temperatures (Tc) than the Soudan
iZIP detectors, which was one of the primary design changes to reduce the
phonon noise. To first order, this noise reduction occurs because the pro-
jected dominant noise source for SNOLAB, the thermal fluctuation noise
between the TES and the cooling bath, is reduced at lower temperatures;
for further discussion see Ref. [95]. The detector resolution measurement
results demonstrate improved detector performance of the prototype detec-
tors relative to the SuperCDMS Soudan detectors, and the achievement of
detector performance goals for the SuperCDMS SNOLAB experiment.

3.1.1 Data-Driven Resolution Measurement

The direct measurement of a detector’s baseline resolution requires calibra-
tion data and “noise” data. The calibration data is used to determine a
calibration factor to convert the output of the phonon amplifier (in amps)
to an energy (in eV). The use of the “noise” data is less obvious; it consists of
time series data that are digitized and read out in the same way as standard
events, except that the data acquisition system is triggered randomly with
the intention of reading out a time series in which no event occurs. There-
fore, noise data are frequently referred to as “random triggers” or simply as
“randoms.”

The random triggers are fit by the 1D optimal filter (OF) algorithm
and the amplitude of the fit is recorded. As shown in Fig. 3.1 (left), even
though there has been no energy deposition in the detector when the random
trigger was digitized, the OF algorithm will fit a small non-zero amplitude
because of the noise fluctuations. The noise fluctuation in this example has
caused the amplitude to fit to a negative value (which is just as likely as a
positive value when no signal exists in the data). It is clear that the OF
amplitude fit of the random triggers can be used to characterize the detector
noise because larger noise fluctuations will result in a larger span of the fit
amplitudes to both positive and negative values. The standard deviation of
the distribution of OF amplitude fits to a collection of random triggers gives
the baseline resolution.
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Figure 3.1: (left) Example simulated random trigger (noise only) with the
best fit OF template overlaid in red. Even though there is zero signal, noise
fluctuations result in the OF algorithm fitting a small non-zero amplitude.
(right) The OF amplitude fit results (from a detector with two readout
channels) of many random triggers, when the OF algorithm has no constraint
on the time delay search window [96].

Constraining the Optimal Filter Time Offset

Figure 3.1 (right) shows the histogram of many OF fit amplitudes to random
triggers (for a two-channel detector), and also reveals a subtlety in the OF
fitting of random triggers. The bimodal distribution occurs because of the
time-offset degree of freedom (which minimizes the OF χ2 for left-right shifts
of the time domain template as described in Sec. 2.3), which allows the OF
fit to find the largest noise fluctuation that resembles a signal pulse within
the entire time series of data. The OF then returns the amplitude of that
fluctuation. Because it is likely that the OF finds a noise fluctuation that
is significantly different than zero, the distribution shown in Fig. 3.1 (right)
has a deficit of events at reconstructed amplitudes at and around 0 keV.

This undesired time-offset degree of freedom of the standard OF is dis-
abled when measuring the detector baseline resolution: the time offset (t0
in Eq. 2.16) is clamped to t0 = 0 in the fit. With this adjustment, we refer
to the OF amplitude of the total phonon trace as “ptOF0,” where the 0 in-
dicates that the t0 has been forced to 0, and with this adjustment OF fits to
random triggers result in a Gaussian distribution, as shown for example in
Fig. 3.2, and the 1σ width of this Gaussian distribution defines the baseline
resolution.
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Efficient Calibration of low-Tc Detectors

The lower Tc TES transition temperature has the primary advantage of
reducing the TES noise, but one negative side effect of the lower transition
temperatures is that the TESs exhibit a smaller “dynamic range.” That
is, low-Tc TESs begin to saturate for lower levels of incident power, and
this became problematic in the testing of these prototype detectors because
the TES began to saturate at the energies used to calibrate the detector. In
particular, the 356 keV γ events from 133Ba served as an efficient calibration
source for the SuperCDMS Soudan iZIP detectors, which were fabricated
with Tc in the 70–110 mK range. In this section, we show results from a
prototype detector (referred to as detector S12C, with the same dimensions
and channel layout as the iZIP detectors) with Tc in the 60–68 mK range,
and the TESs were found to begin to saturate for the 356 keV γ events. The
efficient nature of the 133Ba 356 keV γ calibration still made it appealing for
detector calibration for the resolution studies presented in this section, but
because the TES saturation introduced non-linearity into the TES response
(and therefore non-linearity into the energy scale of the OF amplitude energy
estimate) extra calibration steps were required.

The OF underestimates the energy of saturated events, and so the näıve
calibration approach of centering the 356 keV events at that energy results
in an energy scale that is biased to low energy. The pulse “integral” energy
estimate, which has worse energy resolution than the OF energy estimate but
is less prone to energy scale non-linearities from saturation effects than the
OF energy estimate, was used to correct the OF amplitude energy estimate.
The correction assumed that (1) the integral and OF energy estimates were
both linear at low energies and that (2) the integral energy estimate was
linear up to 356 keV. The latter of these assumptions comes from the fact
that the OF estimate is highly sensitive to the pulse shape, whereas the
integral is less sensitive. The saturation correction technique centers the
356 keV events at that energy in the integral energy estimate, and also
forces a one-to-one relationship between the integral and OF at lower energy.
This ensures that at low energy, at the energy where the baseline resolution
is measured, the OF energy scale is unbiased. Figure 3.2 left depicts this
calibration and correction technique.

With the OF energy scale calibrated, the baseline resolution was deter-
mined in units of eV as shown in Fig. 3.2 right. At the time of measurement,
the 52.4 eV resolution measured on S12C was one of the lowest measured
resolutions on an iZIP-style detector. This improvement was one important
piece of evidence of the detector noise improvements from lowering the Tc
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Figure 3.2: (left) Data from 133Ba calibration of the S12C detector, in the to-
tal phonon integral vs. total phonon OF energy estimates. (right) The S12C
detector baseline resolution measurement using random triggers and mea-
sured using the constrained time-offset OF, giving a resolution of 52.4 eV.

of the TES sensors, and the following sections (3.1.2, 3.1.3, 3.1.4) focus on
the TES characterization to improve the understanding of such an energy
resolution.

3.1.2 Phonon Amplifier Noise

The noise power spectral density (PSD) is the variance of noise as a function
of frequency, and is calculated using a collection of random triggers that are
uncontaminated by events and are representative of the detector noise. The
discrete Fourier transform (DFT) g̃n of a time series gk is given by:

g̃n =
1

N

N
2
−1∑

k=−N
2

gke
−2πifntk (3.1)

whereN is the number of samples in the time series and where g̃n is evaluated
for n = −N

2 →
N
2 − 1 in integer steps. The frequency spacing is given by

fn = n 1
T where T is the time length of the time series in seconds. The time

steps are given by tk = k∆t = k TN and in this notation are symmetrical
around 0. To calculate the PSD J , the squared magnitude of the DFT |g̃n|2
is calculated for each random, and the average value of |g̃n|2 is calculated
for each frequency index n:

Jn = 2T × 〈|g̃n|2〉. (3.2)
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The normalization convention for PSDs is notoriously inconsistent, in
part because at times it is convenient to consider the positive and negative
frequencies over which the Fourier transform is defined and at times it is
convenient to consider just the positive frequencies. CDMS has historically
considered positive frequencies, and then “folded over” the PSD across the
y axis and applied the factor of 2.

When considering the TES noise, gk is typically a current in amps, and
therefore the units of the PSD, Jn, is amps2/Hz. Very commonly, instead of
considering Jn as a representation of the variance of the noise as a function
of frequency, we plot the standard deviation, or

√
Jn. There are benefits of

both units, and
√
Jn is convenient since this quantity is linearly proportional

to the baseline resolution of the detector (Eq. 3.16) as discussed in Sec. 3.1.5.
We show multiple PSDs, in units of amps/

√
Hz, for the iZIP S12C de-

tector in Fig. 3.3 top. The individual channels are shown by the colored
lines, while the total phonon (i.e. traces summed in the time domain) PSD
is shown by the solid black line. The quadrature sum of the individual chan-
nels is shown by the dashed black line, and it is useful because it represents
the total phonon noise that would exist if that noise between the individual
channels was uncorrelated. Since fundamental TES noise is uncorrelated
between channels and environmental noise sources are more likely to be cor-
related between channels, comparison of the total phonon and quadrature
sum PSDs is useful for diagnosing reducible environmental noise sources.
Also, as shown in Sec. 3.1.5, the quadrature noise is useful for deriving a
“best case” baseline energy resolution that is achievable if the environmental
noise sources are removed.

3.1.3 TES Voltage Biasing

The TES is a very sensitive power to current amplifier, and in this section
we discuss how to measure the dynamic current response (dI) of the TES
to a change of input power (dP ). The voltage-biased TES schematic is
shown in Fig. 3.4 (left) where the shunt resistor Rs is significantly smaller
than the equilibrium TES resistance, an inductor L is included to facilitate
readout of the current through the circuit with a SQUID amplifier (a highly
sensitive current to voltage converter), and there is stray parasitic resistance
Rp in the circuit. It is critical that the TES be voltage-biased (i.e. Rs �
Rp + RTES) as opposed to current-biased for stable operation. To first
order, this stability condition can be explained when considering the power
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Figure 3.3: (top) The current noise (amps/
√

Hz) for each channel , the total
phonon channel sum, and the quadrature channel sum for the S12C iZIP
detector. (bottom) The S12C power noise (watts/

√
Hz), converted from the

measured current noise using the (dI/dP ) conversion described in Sec. 3.1.4.

Figure 3.4: (left) Simplified circuit diagram for the TES amplifier, with the
shunt resistor (Rs), parasitic resistor (Rp), inductor (L), and TES element
labeled. (right) The Thevenin equivalent voltage-biased TES circuit, where
Vb = Ib ·Rs and the load resistor is given by Rl = Rp +Rs.
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dissipated in the TES:

PJoule =
V 2

R
= I2 ·R. (3.3)

When the TES resistance increases upon some incident phonon power from
an event in the detector, with a constant voltage across the TES the Joule
power dissipated decreases as indicated by Eq. 3.3. This reduction of Joule
power for an increase in TES resistance returns the TES to equilibrium and
is referred to as negative electrothermal feedback. By contrast for a current-
biased TES, increasing the resistance increases the Joule power dissipated in
the TES, thereby further increasing the resistance and this positive feedback
loop results in unstable operation. A significantly more thorough consider-
ation of stable voltage-biased TES operation is discussed in Ref. [95] and
Ref. [78].

3.1.4 Phonon Collection Efficiency

The phonon collection efficiency (εphonon collection) is the fraction of energy
from an event that ends up as dissipated power in the TES. It is an impor-
tant quantity to measure because the baseline energy resolution is directly
proportional to εphonon collection, and because measurements of εphonon collection

help inform design choices for future detectors. We calculate the energy col-
lected in the TES using the current read out by the TES in combination
with measurements of the electronic components of the TES circuit. Then
we take the ratio of this collected energy with the known true energy of the
event, and define this as the TES collection efficiency:

εphonon collection =
Ecollected

Etrue
. (3.4)

Measuring the TES collection efficiency is not only a critical step in
calculating the theoretical baseline resolution of the detector (Sec. 3.1.5)
as well as the detector leakage current (Sec. 3.2), but it is important to
measure for each prototype detector to determine how changes in the detec-
tor fabrication process are affecting the TES collection properties. For the
prototype detector S12C, we do the phonon collection measurement on a
channel-by-channel basis as well as for the full detector (the channel sum).

When the TES is operating in the stable voltage-biased regime, the tem-
perature of the TES never increases or decreases appreciably and rather a
power flux δP incident on the sensor results in a reduction of current δI
through the sensor that satisfies PTES,in = PTES,out. In order to compute
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Figure 3.5: The simplified TES thermal diagram. In this simplified model,
the bath represents the collection of the crystal and the dilution refrigerator.
More realistic thermal models are considered in Ref. [77, 95].

these two terms we start with the simplest versions of the electric differential
equation governing the TES:

Vb = IRl − L
dI

dt
+ IRTES (3.5)

as well as the thermal differential equation governing the TES:

C
dT

dt
= I2RTES − Pbath + δP (3.6)

where C and T are the TES heat capacity and temperature respectively,
the electronic component names are derived from Fig. 3.4 (right), and the
thermal component names are derived from Fig. 3.5. To see how a non-
equilibrium power input δP is converted in a change δI from the equilibrium
TES current I = I0 + δI, we solve for the voltage across the TES:

VTES = I ·RTES = Vb − I(RL) + L
dITES
dt

(3.7)

and plug this into the thermal differential equation, Eq. 3.6:

C
dT

dt
= I ·

(
Vb − I ·RL + L

dITES
dt

)
− Pbath + δP. (3.8)

We now integrate both sides of the equation over time and extend the inte-
gral to effectively infinite times (long after the TES has returned to equilib-
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rium), giving:

∫ t→∞

0
dt C

dT

dt
=

∫ t→∞

0
dt

(
I ·
(
Vb − I ·RL + L

dITES
dt

)
− Pbath + δP

)
.

(3.9)
Because T and ITES either do not change or return to their original values
as the TES returns to equilibrium, the differential terms go to zero when
integrated. Further rearranging so as to solve to for the circuit response to
the power pulse δP gives:∫ t→∞

0
dt δP = −

∫ t→∞

0
dt (I · (Vb − I ·RL)− Pbath) . (3.10)

We also make the approximation that Pbath stays at its equilibrium value
as long as the TES stays in the stable regime of negative electrothermal feed-
back. This is a valid assumption because, when balancing a δP in Eq. 3.6,

the decrease in Joule heating (
V 2
TES

RTES
) due to the increase in RTES is signif-

icantly more efficient than increasing Pbath. This is attributed to the fact
that a change in the power dissipation to the bath requires a temperature
change of the TES:

Pbath ∝ (T 5 − T 5
bath) (3.11)

and as previously stated the TES does not appreciably change temperature
when in electrothermal feedback. The equilibrium power dissipation to the
bath is equal to the equilibrium Joule power dissipation in the TES, and
therefore:

Pbath = PJoule,0 = I0 · VTES = I0(Vb − I0RL). (3.12)

By Taylor expanding the TES current through the TES (ITES = I0 +δI)
we express the current as an equilibrium component I0 as well as a variable
component δI that represents the dynamic signal that is measured. We also
plug in for Pbath, and Eq. 3.10 becomes:∫ t→∞

0
dtδP = −

∫ t→∞

0
dt
(
(I0 + δI) · (Vb − (I0 + δI) ·RL)−

[
I0(Vb − I0RL)

])
.

(3.13)
Cancelling and rearranging terms gives a relationship between a displace-
ment from the power equilibrium and the displacement from the current

64



3.1. Detector Resolution

As1 Bs1 Cs1 Ds1 As2 Bs2 Cs2 Ds2

R0(Ω) 0.3 0.27 0.29 0.30 0.35 0.29 0.31 0.33
Rp(Ω) 0.016 0.016 0.015 0.016 0.018 0.017 0.018 0.017
Ib(µA) 82.0 60.5 63.4 63.5 48.8 64.6 64.6 72.2

Vb(µV ) 2.0 1.5 1.5 1.5 1.2 1.6 1.6 1.7
Rl(Ω) 0.030 0.030 0.029 0.030 0.032 0.031 0.032 0.031

Table 3.1: Measured resistances and bias currents (Ib) by channel on the
S12C detector.) The values below the double horizontal line are not directly
measured, but rather derived based on the schematics of Fig. 3.4, where
Vb = IbRs, Rl = Rp + Rs, and the shunt resistor Rs is taken to be 0.024Ω
based on historical measurements.

equilibrium, δI:∫ t→∞

0
dt δP = −

∫ t→∞

0
dt
[
δI · (2I0RL − Vb) + (δI)2RL

]
. (3.14)

We can perform the integral effectively to t → ∞ by integrating to a time
after the system has returned to equilibrium. For an energy deposition in an
iZIP detector, the phonon propagation and phonon collection fin coverage
(discussed in Sec. 2.4) result in δP pulse fall times of τF ∼ 750µs. Therefore,
as long as we integrate to t & 3ms we will integrate over the full time that
the phonon power from the event is being dissipated in the sensor, which is
equivalent to the energy from the event that is collected by the TES:

Ecollected =

∫ &3ms

0
dt δP. (3.15)

The combination of Eq. 3.15 and Eq. 3.14 allows us to calculate the
energy absorbed in the TES using the measurable electronic components
I0, RL, Vb as well as the TES signal δI. Ecollected can be calculated on an
event-by-event basis, and the true energy of the event Etrue can be deter-
mined with an auxiliary detector calibration, and so the phonon collection
efficiency can be calculated on an event-by-event basis with Eq. 3.4.

Phonon collection efficiency results for the S12C detector are shown in
Fig. 3.6. A series of <70% efficient phonon absorption processes occur be-
tween the TES and the detector which leads to the observed average 22%
total collection efficiency. The lossy phonon collection mechanisms are not
covered in this thesis, and are an active area of research within CDMS [95].
The final result of 〈εphonon collection〉 = 22% is invaluable in evaluating the
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3.1. Detector Resolution

Figure 3.6: (left) The phonon collection efficiency (εphonon collection) calcu-
lated for events in the 100–200 keV range, where Ecollected is calculated
using the total phonon signal (the channel sum). The solid (dashed) his-
togram represents the Etrue measured by the optimal filter (pulse integral)
energy estimate. (right) The phonon collection efficiency measured on a
channel-by-channel basis. The individual S12C channels (of which there are
8 total) on average collect 2–3% of the event’s energy.

detector performance because it indicates to what extent the detector reso-
lution can be attribute to phonon collection properties vs. noise properties,
which in turn informs future detector designs.

3.1.5 Optimal Filter Baseline Resolution

The best possible energy resolution of the TES via the optimal filter can be
determined by evaluating the second derivative of the OF χ2(a) amplitude
fit (Eq. 2.16), which gives:

σâ =
[ N/2∑
n=0

(
2
|Ãn|2

Jn

)]−1/2
. (3.16)

Ãn is the template and normalized such that:

N∑
n=0

An[∆t] = εphonon collection. (3.17)

Here ∆t = 0.8µs and is the time digitization rate, and we use the measured
collection efficiency of 22% as shown in Fig. 3.6 left.
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3.2. Detector Leakage Current

For the PSD (Jn), we use power noise as given by Fig. 3.3. This gives σ =
51.2 eV. Comparing with measured resolution obtained via the data driven
method (the 52.4 eV shown in Fig. 3.1), offers a good cross check because
these two values were arrived at relatively independently: the data-driven
method depended on a calibrated energy scale, while the calculation of the
theoretical resolution of the detector depended on a calibrated energy scale,
a measurement of the phonon collection efficiency, as well as an accurate
power noise measurement.

The utility of Eq. 3.16 goes far beyond the above example of under-
standing the signal and the noise contributing to the data-based resolution
model. The combination of a noise estimation and phonon collection effi-
ciency estimates with Eq. 3.16 permits projections of detector resolutions
for future and existing detectors operating in ideal operating conditions. For
example, in Fig. 3.7 we consider the fundamental limit of the S12C resolu-
tion operated in an ideal environment, instead of at the surface test facility
where environmental noise sources abound. In this extrapolation to better
operating conditions, we remove the anomalously noisy channel Cs2 from
the equation, which decreases εphonon collection by 7

8 but overall leads to an

improved detector resolution as
√
J is decreased by a larger fraction. The

removal of this channel leads to an estimated baseline resolution of 48 eV.
The next projection indicates that if we could remove the non-fundamental
noise sources that generates a correlated noise component on all TESs (seen
as the difference between the channel sum and the quadrature sum PSDs)
then a 35 eV threshold would be achievable on S12C. Extrapolations such as
this are important for future hardware decisions, where for example we show
that a 15% improvement in the baseline resolution can be achieved without
any detector design changes but instead with superior environmental noise
suppression strategies.

3.2 Detector Leakage Current

With the phonon resolution of the prototype detectors demonstrated to
nearly 50 eV, our R&D efforts turned to the high voltage (HV) operation of
the prototype detectors. The CDMSlite detectors, operated as part of the
SuperCDMS-Soudan payload, first demonstrated the effectiveness of apply-
ing HV (70 V) across CDMS detectors to improve detection sensitivities
to WIMPs lighter than 5 GeV/c2, as shown in Fig. 2.18. For SuperCDMS
SNOLAB, combining high resolution phonon sensors with HV across the de-
tector is projected to provide sensitivities to WIMP masses below 1 GeV/c2
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3.2. Detector Leakage Current

Figure 3.7: The power noise observed on S12C with channel Cs2 removed,
with the detector baseline resolution (from Eq. 3.16) provided in the overlaid
text.

[97]. For example, by measuring the phonon signal with a baseline reso-
lution of σ=50 eV, and operating the detector at 50 V, the phonons from
recoils that ionize just a single e−/h+ pair (<30 eV nuclear recoils) will be
observed above the TES noise.

The preceding paragraph brings up the following question: since we have
demonstrated that prototype detectors have reached baseline resolutions of
50 eV (Sec. 3.1.1) and have demonstrated operation of Soudan IZIP detec-
tors up to 70 V (Sec. 2.5), why have we not observed this signal from single
e−/h+ pairs above the TES noise? The signature of this single e−/h+ pair
resolution would be a quantized energy spectrum at the lowest energies,
which as of yet is unobserved in the iZIP-sized detectors. The shorter an-
swer to this question comes in two parts. First, the high sensitivity of the
prototype detectors presents challenges when testing them in the high radia-
tion environment at a surface test facility as opposed to underground at the
Soudan or SNOLAB sites. Second, by operating a smaller detector that has
reduced susceptibility to the radiation levels in surface test facilities, and
has lower intrinsic TES noise, the SuperCDMS collaboration has observed
the signal from single e−/h+ pairs above the TES noise [98]. The longer
explanation of the difficulties of operating of large (iZIP scale) detectors at
HV at the surface is discussed below in the following order:

• Section 3.2.1 describes the high rate of background particles (primarily

68



3.2. Detector Leakage Current

Figure 3.8: A simulated representation of the energy deposition in surface
detectors with iZIP dimensions (76mm diameter) as well as for larger diam-
eter (100mm) detectors being fabricated for the SNOLAB experiment. The
time window over which an event is typically digitized (50ms) is given by
the time window shown by the vertical lines around 13.5 sec.

from cosmic ray muons) in the detector. These backgrounds generate
a large number of e−/h+ pairs in the detector.

• Section 3.2.2 describes the involved process of identifying and removing
periods of time when the detector is affected by muons.

• Section 3.2.3 describes measurements of detector leakage currents,
specifically:

– how the leakage current appears as an excess phonon noise in the
detector

– a leakage current model, as well as a complementary simulation
of the model, to confirm that the excess phonon noise that is
observed comes from a leakage current

– a measurement of the leakage current on a variety of different
detectors, with implications for the detector resolutions

– a discussion of leading hypotheses for the source of the leakage
current.

3.2.1 Detector Ionization Environment at Surface Facilities

We have found that performance tests at the level of single e−/h+ pair
sensitivity require significant improvement of our control of background ion-
ization in the detector when testing iZIP-sized detectors at the surface. One
unavoidable background comes from cosmic ray muons that strike iZIP-sized
detectors at a rate of 0.8 Hz with a Poisson distribution in time. Because the
muons are high enough in energy that they stream through the full length of
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3.2. Detector Leakage Current

the detector, on average each muon deposits the same amount of energy in
the detector (under the rough assumption that the muons travel vertically
through the full height of the germanium). Muons traversing through the
25.4 mm detector height deposit 18 MeV of energy, which translates to

18 MeV

3eV per e/h pair
= 6× 106 e−/h+ pairs. (3.18)

For a 0.8 Hz muon rate, this is equivalent to a muon-induced flow of 4.8 ×
106 e−/h+ pairs per second, or a current of 0.8 pA, through the detector.
This is an enormous current, especially in the face of trying to observe the
signal from a single e−/h+ pair. Even if the detector has the sensitivity to
observe low energy events that ionize a single e−/h+ pair, in practice it is
made exceptionally difficult because of the muon-induced ionization that is
6 orders of magnitude larger.

Fortunately, we have the ability to identify periods during which, and
shortly after, a muon has passed through the detector. Unfortunately, the
iZIP detectors require approximately 250 ms to return to equilibrium from
the thermal energy generated in the detector from a muon event. This
recovery time means that there is very little time that the detector is in an
operational state when high-quality data can be read out.

Figure 3.8 shows a simulation of a time series of energy deposited in the
detector from muons, as a function of time, at a surface test facility. No-
tice that the thermal decay time from muon events (250 ms) is significantly
longer than the athermal signal from lower energy events, and the time win-
dow over which an event is typically digitized at the surface test facilities
(50 ms) is given by the time window indicated by the vertical purple lines
around 13.5 seconds. As can be visualized in Fig. 3.8, there are periods
of time sufficiently long after a muon event that the detector has returned
to equilibrium. However, as the detector voltage is increased and the en-
ergy from the muon event generated in the detector increases linearly as a
function of voltage, the amplitude of the “muon tails” grows and it becomes
increasingly rare that the detector is operating in equilibrium. Analysis tools
are able to identify when an event or noise trigger has been read on top of
a “muon tail”, and we veto these events using tools described in Sec. 3.2.2.

3.2.2 Muon Veto Analysis Techniques

Figure 3.9 shows real data (50 ms waveform) from random triggers from an
iZIP operated at the surface, which shows large variation in the slopes of
the noise traces and a large variation in the DC value of the traces. This
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Figure 3.9: Random traces acquired on a prototype iZIP detector operated
at a surface test facility, showing the slopes due to muon “tails” evident to
varying degrees on top of the underlying phonon noise. The labels in the top
left of the plots correspond to the labels in scatter plot shown in Fig. 3.11.
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Figure 3.10: The PSD constructed with slopeless random traces (labeled as
“underlying noise”). The dashed PSDs are calculated with random triggers
with varying steepness of slopes (in units of amps/ms) in the randoms.

variation is to be expected based on the simulated energy deposited in an
iZIP detector as a function of time shown in Fig. 3.8. The challenge posed
by data of this nature is that if all the randomly acquired traces are included
in the PSD calculation (Eq. 3.2), large amounts of low frequency noise will
be injected into the PSDs which will be misinterpreted to be the actual
underlying TES noise. This is shown directly in the PSDs in the dashed
lines in Fig. 3.10, where we have selected random traces with a particular
slope across them to create the PSD. Even for PSDs constructed with traces
only containing modest slopes across them, for example 1×10−6amps/ms,
there is a ×5 increase of the noise at 50 Hz as shown by the dark blue PSD
vs. the “underlying” PSD that is constructed with slope-less traces.

In order to reliably measure the underlying phonon noise, some selection
criteria must be applied to the random triggers prior to constructing the
PSD. We have developed analysis scripts to reject randoms traces contam-
inated with muons, other background events, or that are otherwise anoma-
lously noisy, by characterizing the randoms pulses with 4 quantities that
provide information about the state of the detector at the time when the
random was read out. These 4 quantities are:

1. The DC value of the random: if a muon has recently interacted in the
detector, the DC value will be high

2. The slope of the random: if the detector is relaxing back to equilibrium
after a muon event, there will be a significant slope across the trace

3. The optimal filter best fit amplitude (â): if a pulse exists in the ran-

72
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doms, the optimal filter should fit the pulse and the corresponding â
should be large relative to the pulse-free random triggers

4. The optimal filter χ2 value: if the random is anomalously noisy or
contains multiple pulses, the χ2/DOF will be significantly greater than
1

Figure 3.11 top shows the distribution of randoms in the DC value vs.
slope plane for 5 different voltages. Based on the tolerance of the PSD
to sloped randoms, an acceptance region is defined in the 4D parameter
space, which is roughly shown as the boxed region in the DC value vs. slope
plane. At low voltages, the detector is stable enough to apply the selection
criteria and acquire a sufficient number of randoms (∼20) to construct a
PSD that represents the true TES noise. However, at higher voltages the
distribution of random traces in the parameter space changes significantly,
as shown clearly in Fig. 3.11 bottom. In particular, the necessary cut on
the slope of the trace (given by the red dashed vertical line in the inset of
Fig. 3.11 bottom) has an 80% random acceptance with the 0 V data, but a
<5% acceptance for the detector operated at 44 V. With low cut efficiencies
at high voltage, these analysis scripts have indicated that sometimes 20
minutes of data is required in order to acquire 1 second of high quality data.
Despite the waiting time introduced by the muon-veto analysis techniques,
they are critical for accurately measuring the TES noise PSD in a surface
test facility.

3.2.3 Phonon Noise as a Function of Detector Voltage

Even though the muon-veto analysis scripts are effective at removing peri-
ods of high ionization in the detector, surprisingly there is a source of lower
energy ionization that appears to be a continuous source of current through
the detector. Up to this point we have been unable to eliminate or reliably
reduce this source of ionization. We observe small numbers of e−/h+ pairs
leaking across the detector as a continuous source of excess power noise in
the TES. The leakage becomes increasingly problematic at higher voltage
because it becomes a large additional source of Luke phonons, which gener-
ates excess noise in the TES.

The excess noise is visible in the time domain, and Fig. 3.12 explicitly
shows the phonon noise on two channels at 0 V (left) compared to 44 V
(right). The excess noise is also clearly visible in the frequency domain, as
shown for the S12C detector, as well as the G23R prototype detector (which
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Figure 3.11: (top) The distribution of randoms in the DC value vs slope
plane, showing the approximate acceptance region of this parameter space
to select the random traces that are representative of the underlying TES
noise. The red symbols highlight the region in this plane that the raw traces
in Fig. 3.9 are selected. (bottom) A projection of the data onto just the trace
slope axis, showing that the selection criteria become increasingly inefficient
when the detector is operated at high voltage.
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Figure 3.12: Examples of time domain noise from an iZIP-style prototype
detector. The data come from two channels: channel A, top, blue and
channel B, bottom, orange. The left (right) panel show noise traces from
these two channels, with the detector at 0 V (44V). The traces read out
at 44 V clearly have worse noise. It is also clear that the excess noise
is correlated between channels, which is expected from a charge leakage
noise source that stochastically generates NTL phonons distributed as small
phonon pulses. These small pulses are absorbed equivalently to the standard
phonon pulses on the iZIP—equally on all channels in the ballistic limit—
which leads to correlated noise.
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Figure 3.13: (top) Power Noise PSDs measured on a phonon channel on
the S12C detector (with negative HV applied to side 2, reading out side 1).
Overlaid on each PSD is a leakage current model using the measured phonon
fall time. (bottom) Power Noise PSDs measured on a phonon channel of the
G23R prototype detector.

is also an iZIP-style detector), in Fig. 3.13. The excess noise has a character-
istic shape—largest at low frequencies and negligible at high frequencies—
which is consistent with the shape of the phonon pulses (recall the pulse
template curve shown in Fig. 2.6 right). This makes the excess shot noise a
particularly unpleasant noise source: it has perfect overlap with the signal
bandwidth.

Every detector tested at the surface exhibits this excess voltage-dependent
noise, and below we motivate a physical noise model that derives the ob-
served bandwidth of the shot noise and helps quantify the processes that
are producing the excess noise.

Charge Leakage Noise: Derivation of the Effect of Detector Shot
Noise on TES Noise

We refer to charge leakage noise as a “shot noise” because we use Walter
Schottky’s 1918 result of vacuum tube noise [99] as a starting point for a
model for how individual electrons and holes traversing the detector appear
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Figure 3.14: The black data depicts a time series of the shot noise model,
where single charge quanta are distributed with inter-arrival times randomly
sampled from a e−λt distribution (i.e. a Poisson process). For visualization
purposes the delta functions have been widened from being infinitely narrow
to 0.5 ms wide. The average current used in this simulation was 20×10−18

amps (corresponding to an average of 6.25 charge quanta per 50 ms interval,
which fluctuated to 8 charges in this realization). The blue data depicts the
phonon power generated by the charges traversing the detector, for a 50 V
detector bias, and for a phonon absorption time of τF = 175 µs to match
the S12C detector.

as phonon noise in the TES. The shot noise model posits that the charges
traversing the detector are delta-function quanta bursts that are Poissonian
distributed in time. We denote these charge bursts as δI(t) × e, which
occur over a time length Ttrace. Figure 3.14 depicts a time series of charge
quanta bursts, where for visualization purposes the delta functions have
been widened from being infinitely narrow to 0.5 ms wide.

Schottky’s result shows that the current noise PSD (SI , in units of
[Amps2/Hz]) generated by Poisson distributed charge quanta is linearly pro-
portional to the current (I):

SI(f) = 2 e |I| = 2 e2 〈N〉
Ttrace

, (3.19)

where 〈N〉 is the average number of charge quanta in a time series of length
Ttrace. Notice that SI is independent of frequency. The units of the right
hand side are coulombs2/sec = amps2/Hz, as desired. A full derivation of
this result is not given here, though the general form of this result makes
sense in that Fourier transforms of δI(t) give white noise ( |δI(ω)|2 = 1) and
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therefore the total noise power spectral density of these Dirac-delta pulses
is also white. Additionally, it makes sense that the magnitude of the noise
increases with the current (i.e. the number of charge quanta fluctuations).
A full derivation of this result is given in Ref. [100].

The average rate of the dirac-delta functions (i.e. the charge leakage
rate) is given by N

Ttrace
= 〈ṅ〉 which we use throughout the remainder of

this derivation of the charge leakage noise model. Note that by considering
just the average leakage rate, this model excludes even small cascade effects,
where the leakage of a single e−/h+ pair increases the breakdown likelihood
of other e−/h+ pairs.

Using the shot noise result, Eq. 3.19, for the noise created by delta-
function shaped charge quanta, we derive the PSD for phonon pulses with a
characteristic fall time. The delta-functions of current through the detector
release NTL phonons that bounce around the detector and are absorbed at
the same rate as phonons from normal pulses, with the detector therefore
effectively acting as a low pass filter. The filtering effect is depicted in
Fig. 3.14, where the charge quanta bursts are converted to the blue 175 µs fall
time pulses. The detector also acts as a current to phonon power converter
by the NTL effect:

Phonon Power = I∆V. (3.20)

The full current to power transfer function is then given by∣∣∣∣∂P∂I
∣∣∣∣ =

∣∣∣∣ ∆V

1 + iωτf

∣∣∣∣ (3.21)

where τf is the absorption time of the NTL phonon signal (also known as
the pulse fall time, and 1/τf is also known as the signal bandwidth). We
then convert the current noise (units of [Amps2/Hz]) to power noise (units
of [Watts2/Hz]) by multiplying by the square of the current-power transfer
function, giving:

SP,shot =

∣∣∣∣∣ ∆V 2

1 + ω2τ2
f

∣∣∣∣∣× e2 × 〈ṅ〉. (3.22)

The final consideration is a correction to Eq. 3.22 for the < 100% phonon
collection efficiency. Because only a small fraction of the total phonon energy
is absorbed in the TESs, the power noise observed in the TES (

√
SP,shot, in

units of [Watts/
√

Hz]) is decreased proportionally to the phonon collection

78



3.2. Detector Leakage Current

efficiency, εphonon collection:

SP,shot(ω) =

∣∣∣∣∣ ∆V 2

1 + ω2τ2
f

∣∣∣∣∣× e2 × 〈ṅ〉 × ε2phonon collection. (3.23)

This model predicts a specific frequency spectrum of the shot noise, and we
see that the spectral shape predicted by this model exists in both simulations
of detector noise and the real data, as shown below.

Simulation of the Effect of Detector Shot Noise on TES Noise

The noise model described above can be simulated on top of fundamental
TES noise in order to see if the PSD of the simulated traces matches the
prediction from the derivation. A depiction of this simulation is shown in
Fig. 3.15.

We start with a simulation of the fundamental TES noise, without any
charge leakage noise present. We then inject small pulses into the TES noise;
the amplitude of the pulses is given by the voltage across the detector while
the number of pulses is determined by the magnitude of the leakage current.
The fall time of the pulse is given by the phonon collection time (i.e. the
fall time of the phonon pulses) and in this simulation we use τf = 175 µs to
match the collection time observed on the S12C detector. In Fig. 3.15, the
green pulse shows one of the charge leakage pulses for a detector voltage of
50 V (multiplied by 10 in order to be visible). We them sum 6250 of these
pulses together, Poisson distributed over the 52 ms simulated time series
(which corresponds to the number of charge leakage for a leakage current of
0.02 pA), and the result of summing many of these pulses together is given
by the red curve. Adding the fundamental TES noise gives the blue curve.

We simulate a collection of the TES plus shot noise time series at a
particular voltage, and then compute their PSD. We repeat this for voltages
0 V, 10 V, 20 V, ... 100 V to see how the noise changes in the frequency
domain as a function of voltage, and the results are shown in Fig. 3.16.
Notice that the excess noise shape observed in the simulation matches the
spectral shape observed in the data for the S12C detector (Fig. 3.13 top)
which has the same signal bandwidth used in the simulation.

Notice also, in Fig. 3.13, the excess noise spectral shape change is dif-
ferent between the S12C and G23R detectors, and this spectral difference is
predicted from the model of Eq. 3.22. The noise moves to higher frequen-
cies from G23R (which has a fall time of τf = 875 µs) to S12C (which has
a fall time of τf = 175 µs), which is the trend predicted by the model. The
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Figure 3.15: Example of the simulation of a single 50 ms data stream of
charge leakage shot noise injected onto fundamental TES noise. The green
pulse is amplified by a factor of 10 (in order to be visible) and its fall time
is τf = 175 µs to match the S12C detector. Many of the pulses are Poisson
distributed in time and added to the fundamental TES noise, giving the
blue curve.

spectral shape predicted by the model is specifically overlaid as grey lines
in Fig. 3.13, which fits the data well except for on S12C at the highest volt-
ages. The best explanation for this behaviour only at the highest voltages is
that the excess power from the NTL phonons generated by charge leakage is
changing the dynamic response of the TES and changing the pulse fall time
slightly from τf = 175 µs.

Calculation of Leakage Currents

The excess TES noise is used to calculate the leakage current for the S12C
detector at a variety of voltages. We solve for the charge leakage rate, ṅ, in
Eq. 3.23, where for SP,shot(ω, V ) we calculate the contribution of the shot
noise by subtracting the 0 V noise from the total noise:

SP,shot(ω, V ) = SP,total(ω, V )− SP,total(ω, V = 0). (3.24)

We solve for ṅ and other quantities relating to the detector leakage current,
as a function of voltage using the PSD curves shown in Fig. 3.13 top, in
Table 3.2.

The leakage current is calculated for a variety of detectors on which an
excess noise was found as a function of voltage applied across the detector,
as shown in Fig. 3.17. The error bars include uncertainties in the measure-
ments of power noise as well as uncertainties in the voltage applied across
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Figure 3.16: PSDs are made of the simulated traces using different detector
voltages in the simulations. The noise shape and magnitude are consistent
with those predicted by the shot noise model (Eq. 3.23), as well as consistent
with the noise shape seen in the data (e.g. Fig. 3.13).

Voltage (V) SP,total(ω = 0, V ) charges/sec (ṅ) I (amps) Rdetector (Ω)

0 1.6×10−33 ∼0 ∼0 ∼ ∞
10 1.6×10−33 ∼0 ∼0 ∼ ∞
21 3.6×10−33 1.2×105 1.5×10−14 1.1×1015

48 1.0×10−32 9.4×104 1.5×10−14 3.2×1015

73 4.4×10−32 2.1×105 2.3×10−14 2.2×1015

81 1.2×10−31 4.7×105 7.6×10−14 1.1×1015

Table 3.2: The leakage current, as well as the effective total ohmic detector
resistance, derived from the listed excess noise levels at low frequency on
the S12C detector.
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Figure 3.17: Leakage current measurements, as a function of voltage, for a
number of detectors (primarily prototype, primarily iZIP style and size). All
detectors here were measured at a surface test facility, with the exception
of the blue “T5Z2” data point. This data point is determined using data
acquired from Soudan, but is a rough estimate for a number of reasons, one
of which is that low frequency noise present in all PSDs from Soudan masked
the shot noise signal.

the detector. Examining just the S12C data points, it aligned with expec-
tations that at some voltage the current increased significantly (as observed
at ∼80 V) based upon the idea of “breakdown,” where above some voltage
the Coulomb barriers of the detector interface are overcome and a current
flows. The more surprising finding from this study was the leakage current
behaviour at low voltage, showing a nearly voltage-independent magnitude.
This I-V relationship was seen on a number of the other tested detectors,
and has implications for the detector resolution, which are discussed in the
section below.

Effect on Detector Resolutions

The primary problem with the leakage current is that it negatively affects the
detector baseline resolution. The principle of NTL amplification, as shown in
Fig. 2.15 center, is that the signal increases linearly with the voltage and the
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3.2. Detector Leakage Current

Figure 3.18: (left) The total phonon baseline resolution (σt) for a number
of detectors as a function of detector voltage. The solid lines express ideal
(no leakage current) resolution scalings as a function of voltage where the σt

value remains constant as a function of voltage. The data points represent
resolution measurements at those voltages, or deduced resolutions based
on PSD measurements and Eq. 3.16. (right) The electron equivalent energy
resolution (σt) as a function of voltage, derived from the left hand plot using
Eq. 3.26.

noise remains constant until some “breakdown” value. With constant noise
vs. detector voltage, the baseline resolution will be constant as a function
of voltage when measured in units of total phonon energy. As described
in Sec. 2.5, the NTL amplification of the signal is linear as a function of
voltage:

Et = Eee(1 +
e Vb

ε
) (3.25)

so that when the baseline energy resolution is measured in electron equiva-
lent energy units, it is inversely proportional to the voltage bias:

σee =
σt

1 + e Vb/ε
. (3.26)

When there is constant noise vs. voltage the σt resolution is constant, and
the solid lines in Fig. 3.18 show this ideal baseline energy resolution scaling.
When that resolution is converted to the electron equivalent energy scale
(σee), the resolution is inversely proportional to the detector voltage, as
shown in Fig. 3.18 (right).

When the noise increases as a function of voltage, the σee baseline res-
olution will improve more slowly as function of the detector voltage than
indicated by the solid lines of Fig. 3.18. For the data points in Fig. 3.18 left,
we use Eq. 3.16 to calculate the total phonon energy detector baseline reso-
lution σt, using the observed noise Jn as a function of voltage. For Vdet > 0
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3.2. Detector Leakage Current

the data points are above the ideal resolutions because the noise increases
as a function of voltage.

Current Source Hypotheses

Up to this point we have not been able to reduce the shot noise induced
by the leakage current nor identify the source of the ionization. We have
robustly demonstrated that infrared radiation (IR) is not the cause. To elim-
inate low energy ionization due to any infrared background at the detector,
IR blocking “Bock Black” paste developed by the millimeter astronomy com-
munity [101] was applied to the detector lid in between measurements of the
leakage current, and no change in the leakage was observed. Other hypothe-
ses for the leakage currents are leakage from the instrumented surface of
the detector, and leakage from the detector bulk from impurities in shallow
potential wells hopping into the conduction band. This bulk leakage model
would be akin to the leakage that is observed in the prebiasing procedure
described in Sec. 2.5.3 and discussed further in the Appendices of Ref. [83].
An additional hypothesis relates to the unstable voltage across the detec-
tor due to the large amount of ionization generated from muon events. It
is of course possible that the leakage current is a combination of multiple
sources, which may make it particularly difficult to diagnose. Subsequent
to the measurements made here, additional insights into the combination
of the contributions to the leakage current have been made on the smaller
scale quantization detector [98] with improved control of systematic errors
from the smaller detector area.

Fortunately, many of the mechanisms that would generate the signifi-
cant leakage currents shown in Fig. 3.17 would be reduced when operating
the detector underground. An additional piece of evidence that suggests
that the leakage current is suppressed for underground detector operation
is presented in the following chapter. This chapter contains analysis of data
from the T2Z1 detector operated at Soudan in 2015 during which the de-
tector voltage varied between 50 V and 75 V. While the low frequency noise
present at Soudan limited abilities to study the voltage dependent shot noise,
Sec. 4.3.4 presents a study of the trigger rate on T2Z1 and shows that below
72 V the detector operation was stable and the trigger rate effects due to
noise were exponentially decreasing below 72 V.
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Chapter 4

Data Analysis of CDMSlite
Run 3

4.1 Motivation

As the final CDMSlite run at Soudan, the CDMSlite Run 3 analysis served
as a test-bed for many techniques that are being considered for the SNO-
LAB science analyses, and we discuss three of these new techniques in this
chapter. First, a blinding technique was used for the first time in CDMSlite
as a method to reduce the possibility of analyzer bias. Second, advanced
multivariate discrimination techniques were used to efficiently remove in-
strumental backgrounds at the lowest energies measurable by the detector,
which were a limiting background for the Run 2 analysis. Third, a Monte
Carlo modeling of the detector fiducial volume was used to inform our “ra-
dial cut” which removed misreconstructed events at high detector radii.

All of the above techniques contributed towards the larger goal of mov-
ing away from the optimum interval limit-setting approach, discussed in
Sec. 2.5.3, towards a more powerful limit-setting approach. Successful im-
plementation of the above techniques allowed us to accomplish that goal and
the following chapter, Chapter 5, discusses the details of the limit-setting ap-
proach used for the Run 3 analysis. This method had the benefit of moving
CDMSlite from an exclusion-only analysis into one with discovery poten-
tial, and also the benefit of improving the limit over the optimum interval
method.

In addition to the new techniques brought to the Run 3 analysis dis-
cussed in the following chapter, a number of the techniques employed are
the same as those used in the Run 2 analysis. In particular, we use the same
method of pulse simulation to measure cut efficiency. We also use the same
method of discriminating against the more obvious instrumental noise types
with optimal filter fits using instrumental noise templates. Additionally, the
fiducial volume Monte Carlo built on the radial parameter successes from
the Run 2 analysis.
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4.2. Salting

4.2 Salting

Prior to the start of the CDMSlite R3 analysis, the collaboration decided
to adopt a blinding strategy to prevent analyzers from making biased de-
cisions in order to reach a desired result. Because this was the first time
that a CDMSlite analysis would be performed blind, a blinding task force
was formed to consider a variety of blinding schemes. These included data
division, where a fraction of the events are used to tune cuts, develop back-
ground models, etc. and the remaining events are used to search for a DM
signal. “Box blinding” was also considered, where the region of the parame-
ter space where the signal is expected is hidden from the analyzers and only
opened once analysis decisions are finalized using information outside of the
blinded region.

Ultimately these two blinding schemes were determined to be ill-suited
for CDMSlite because of instrumental noise events that exist in the data. In-
strumental noise events make up the majority of events and their magnitude
and characteristics change as a function of time. Therefore it is desirable
to be able to see all events at each stage of the analysis and so, rather than
hiding events, the blinding task force implemented data “salting” in which a
fraction of the events in the dataset were replaced with artificial signal-like
events. This procedure effectively masked the true amount of DM signal in
the data (i.e. it is “blinding with a flashlight”).

The salting procedure was developed openly in that the algorithm was
known to the CDMSlite Run 3 analyzers, and therefore CDMSlite analyzers
were able to contribute to parts of the salting development. In Sec. 4.2.1
and 4.2.2, I describe my primary contributions to the salting effort. This
open development of the salting algorithm did not violate blinding because
the salting algorithm was designed such that the salted events had a normal-
ization and energy spectrum that was randomized within some pre-defined
range.

4.2.1 Determining the Target Number of Salt Events

There is not an obvious number of artificial events to insert into the dataset
in order to accomplish the goal of reducing analyzer bias. This section
explains how the number of artificial events was chosen non-arbitrarily.

First, there should be enough salt that analyzers will be wary of tuning
cuts to remove events, while too much salt would potentially mask instru-
mental backgrounds that we want to be able to identify and remove with
cuts. The simplest choice of the number of salt events is some fraction of
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Figure 4.1: (left) The CDMSlite Run 2 90% CL OI exclusion spin- indepen-
dent cross section limit as a function of DM mass. (right) The number of
DM events that correspond to the excluded σSI from the left figure.

the expected number of events in the analysis’s region of interest. How-
ever, this option proved to be inadequate for CDMSlite because the vast
majority of events in the region of interest are concentrated in a narrow
energy range from the 71Ge decays. Instead of the 71Ge peaks dictating the
number of artificial events added, the energy ranges where there is a lower
level of expected background should dictate the number of events added.
This is because these are the energy ranges where the dataset has the high-
est sensitivity to signal and therefore where it’s most important to have an
appropriate amount of salt.

Instead of using a fraction of the expected number of events in the anal-
ysis’s region of interest, the projected optimum interval sensitivity of the
analysis can be used to naturally incorporate the energy region of low back-
ground when choosing the number of artificial events. Because the optimal
interval method’s sensitivity generally is determined from an energy range
in the final spectrum where there is a low background rate, this method
will not be susceptible to the potential problem of a large fraction of events
appearing in the 71Ge peaks.

For salting CDMSlite Run 3, we estimate the sensitivity by using the
CDMSlite Run 2 OI cross section limit. The cross section limit can be
converted into a number of excluded events using the exposure (i.e. the
kg × days length of the run) as a function of the DM mass, and is shown in
Fig. 4.1.

The 20 GeV/c2 WIMP spectrum covers the full energy range of interest
for the analysis, and therefore we base the salt normalization off of this
WIMP mass, which gives 62 events at the excluded limit. A visualization
of this number of artificial events, given energies drawn from an exponential
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Figure 4.2: Example “salt” added to the CDMSlite Run 2 final spectrum
at the magnitude indicated by the excluded 90% CL for a DM signal. The
salt spectrum is scaled to a much higher level than the exclusion limit to
illustrate its shape.

distribution with a constant offset, is shown in Fig. 4.2 along with the final
Run 2 spectrum. This visualization shows that inserting events at level
of the 90% OI CL sensitivity gives a reasonable number of events: the
artificial event density is sufficient to prevent cut tuning but not so large
as to mask the real events in the regions of low background or potentially
mask an unanticipated or instrumental background in the CDMSlite Run 3
dataset. This method of determining the number of salt events based on
the sensitivity was adopted because it reduces the arbitrary nature of the
choice.

The number of salt events to use for Run 3 was determined based on the
62 events calculated from Run 2, but scaled by the relative duration of the
runs, corrected by the estimated passage fraction of the salt to analysis cuts
(∼15%), and also randomized within a range of possible values. The final
range was 280–840 events, and the number of salt events used for Run 3 was
revealed to be 393 after the dataset was unblinded.

4.2.2 Selecting Events To Replace

The salting algorithm was designed to replace events with artificial events,
rather than adding artificial events, for technical simplicity. This was in part
to avoid having to work around the sequential event IDs that are a feature
of the CDMS data format. Each CDMS event also contains a significant
amount of metadata in addition to the digitized waveforms (e.g. cryocooler
phase information, base temperature information, trigger time stamps, de-
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tector array trigger information). Trying to appropriately generate artificial
data for all these categories would be a challenge, and so instead the existing
algorithm only creates artificial waveform data and otherwise inherits the
metadata from the replaced event.

While the event replacement approach had many advantages, it required
particular attention when selecting which events to replace. Of course the
replaced events were chosen to be uniformly distributed in calendar time
(as expected of a DM signal). In other variables it would be less easy to
replace events in such a way that the artificial events resemble the expected
distributions of DM signal events. For example, the artificial events should
be uniformly distributed with the cryocooler vibrational phase, but because
as shown in Fig. 4.6 the majority of events occur within a certain range of
the cryocooler vibrational phase, additional analysis selection criteria were
required when choosing the events to replace.

During inspection of the first attempt to salt the CDMSlite Run 3
dataset, the salt events were found to be not uniform in cryocooler vibra-
tional phase but highly correlated with the cryocooler-induced noise triggers.
Events that are reconstructed at higher energy are less likely to be low fre-
quency noise, as shown in Fig. 4.3, and so the undesired correlation was
removed by raising the minimum energy of the replaced events. Fig. 4.3
indicates that an energy cut of 2 keVt is sufficient to remove the correlation,
and because the low frequency noise was found to get worse after the 252Cf
calibration data shown in the figure, the final energy cut was set at 3 keVt.

4.2.3 CDMSlite R3 Salt Application and “Unsalting”

In the final application of the salting algorithm, the event energies were
chosen from an exponential distribution with a constant offset:

P (E) ∝ C + (1/D) exp−E/D; E ∈ [0.05, 5] keVee, (4.1)

where the exponential component was chosen to roughly approximate a
WIMP spectrum and the constant offset was chosen so that salt existed
over the analysis energy region of interest. C and D were randomized hid-
den parameters, sampled logarithmically from 1/3 to 3 keV−1

ee for C, and
from 0.5 to 2 keVee for D. The chosen energy was restricted from 0.05 to
5 keVee to match the analysis’s region of interest. The randomly selected
parameters used were C = 0.6967 keV−1

ee and D = 1.299 keVee, resulting in a
nearly uniform distribution of salt events over the energy region of interest.

The success of the salting procedure was confirmed in a post-unblinding
analysis effort. The salt was inserted at an appropriate magnitude and as-
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Figure 4.3: The distribution of 252Cf calibration data in the crycooler vibra-
tional phase variable (labeled as CryoPreTime Mod 0.83s). As the selection
criteria moves to higher energy, the correlation of events with the phase
decreases.

sumed a signal-like distribution in the parameters of interest for the analysis.
Details of these post-analysis confirmations are documented in the results
section of the following chapter, in Sec. 5.3.2.

4.3 Experimental Setup

A comprehensive review of the CDMSlite experimental setup in the context
of the Run 1 and Run 2 analyses can be found in the theses of R. B. Thakur
and M. Pepin [67, 83]. Therefore, this section primarily highlights the ex-
perimental setup differences between Run 3 and the earlier CDMSlite runs.

4.3.1 Detector Selection and Configuration

Figure 4.4 shows the SuperCDMS Soudan detector array with the T5Z2
and T2Z1 detectors labeled. The decision to switch CDMSlite detectors
from T5Z2 to T2Z1 for Run 3 was based on a number of factors. First, a
better noise environment was observed on T2Z1, relative to T5Z2 and most
other detectors, leading to a slightly better baseline resolution than that
observed with T5Z2. The superior noise performance was primarily because
of reduced susceptibility to vibrational noise as discussed in Sec. 4.3.2. We
expected this would enable a lower analysis threshold for Run 3 and an
improved sensitivity to low-mass DM. In addition, during Run 3 commis-
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Figure 4.4: (left) A depiction of the SuperCDMS Soudan detector array, with
15 iZIPs total arranged in 5 “towers.” (right) A depiction of an iZIP detector
read out in CDMSlite mode. Copied from Ref. [82], with permission.

sioning, we saw that the measured leakage current for T2Z1 was less than
that of other candidate detectors. And finally, the decision to switch from
T5Z2 to T2Z1 for Run 3 was intended to demonstrate reproducibility of the
CDMSlite operating technique across multiple detectors.

Side 2 of T2Z1 was biased with a 75V applied voltage while the phonon
and charge channels on side 1 were read out. As discussed in Sec. 4.3.3,
and unlike in Run 2, there were times throughout Run 3 that the detector
voltage differed significantly from the applied power supply voltage. The
data acquisition readout for Run 3 was also limited to a single tower (Tower
2) as opposed to previous CDMSlite runs when the whole detector array
was read out.

The pre-biasing procedure—where the detector voltage is raised above
the operating voltage for 10 minutes before data taking as discussed in
Sec. 2.5.3—was found to reduce charge leakage shot noise in the phonon
signal at the start of each data series. For Run 3, 85V was used as the pre-
bias point for the nominal 75V operating voltage. (In Run 2, a 80V prebias
was used for the Run 2 70V operating voltage).

4.3.2 Vibration Monitoring

One of the central challenges to all low threshold SuperCDMS Soudan anal-
yses is the significant contribution of “low frequency noise” (LFN) to the
noise budget of the phonon readout. This noise source affects all Soudan
detectors, degrades detector baseline resolutions, forces the setting of higher
analysis thresholds, and as a result reduces sensitivity to low mass WIMPs.
Section 2.5.3 describes how, prior to CDMSlite Run 2, accelerometers were
installed on the cryocooler, which was the most vibrationally intensive com-
ponent of the experiment.
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Figure 4.5: The low energy event density dependence on the the cryocooler
vibrational phase is shown in the red histogram. Good events from actual
energy depositions, shown in the blue histogram, are not correlated with the
vibrational phase.

The most useful cryocooler correlation analysis variable, discovered dur-
ing the CDMSlite Run 2 analysis, was the “time since” last cryocooler chirp,
where the cryocooler chirps were found to occur at 0.83 second intervals
[102]. Because on occasion the accelerometer did not register a cryocooler
chirp and a period lasted n × 0.83 seconds, the 0.83s modulus of the cry-
ocooler “time since” variable proved the most beneficial analysis variable for
Run 2 and Run 3 analyses.

Because the LFN caused triggers that could mimic low energy events
(<5 keVt), and because the LFN caused more triggers than any other back-
ground source in Run 3, we use the low energy event density as a proxy
for the intensity of the LFN. Figure 4.5 shows the low energy event density
dependence on the time since last cryocooler chirp (also known as Cry-
oPreTime Mod 0.83s, or more generally as the cryocooler phase). The LFN
vibrations on T2Z1 are strongest 0.1 seconds after a crycooler cycle. Section
4.6 describes how we incorporate this information into overall LFN quality
cuts.

The vibrational noise from the cryocooler was also found to vary over
the course of the ∼60 day dataset, as shown in Fig. 4.6. In addition to the
variable event rate in the 0–0.2s range of the crycooler phase, an additional
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Figure 4.6: An event density plot of lower energy events (-2 < keVt < 5)
that are more likely to be instrumental noise events than events from particle
energy depositions in the detector. Ba and Cf calibrations are highlighted.
A Cf period when no data was read out is between May 01 and May 05.
The April 14 stripe is from a single series (01150414 1430) when the cold
trap was being cleaned. A second 3 hour series on May 05 (01150505 1422)
was removed from the plot as it was saturating the color map—this was the
first series after the late-Run Cf calibration.

noise source that is uncorrelated with the crycooler vibrational phase was
observed to start on roughly April 1, and is explored below in Sec. 4.3.3.

4.3.3 High Voltage Current Monitoring

Monitoring of the HV power supply current began with CDMSlite Run 2,
and the motivation and basic aspects of this current reading are described
in Sec. 2.5.3. The HV current readings were critical for correcting the recon-
structed energy of events in the Run 3 analysis. Referring to the schematic
shown in Fig. 2.16, the value of Rp (and therefore IHV ) varies significantly
over time, between an effectively infinite resistance and 625 MΩ. As shown
in Fig. 4.7, Rp was found to be strongly correlated with the temperature in
the room that housed the electronics (the RF room). Because this varia-
tion is undesirable, the air handler which supplied fresh air to the RF room
was turned off in early April 2015, raising the temperature in the room and
increasing the parasitic resistance (decreasing the leakage current).
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Figure 4.7: The RF room temperature (TE FEB RACK) (oF) and the leak-
age current (iseg hv current b) (nA) as a function of calendar time. The
x-axis runs from mid-February to early April, 2015.

Figure 4.8: Correlation between trigger rate and detector voltage. The red
curve is the best fit of the trigger rate to the detector voltage model of
Eq. 4.2.

The detector bias voltage is the most important factor in CDMSlite’s
energy scale, so it is crucial to monitor the HV current in order to know
the detector voltage over the course of the run. The value of Rp varies
significantly over time, and Sec. 4.4.1 discusses how we correct the variable
energy scale using the HV current readings.

4.3.4 Charge Triggers

The HV current readings have also led to an improved understanding of
T2Z1’s noise environment over time. Using the trigger rate as a metric for
the noise environment (with a higher trigger rate corresponding to higher
noise), Fig. 4.8 shows the dependence of the trigger rate on the detector
voltage, after the majority of cryocooler-induced LFN triggers are removed.
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For |Vdet| < 72 V, there is an exponential dependence of the trigger rate
on the detector voltage, and a sharply increasing power law dependence for
|Vdet| > 72 V. The inability to fit all the data to one functional form suggests
two things, the first trivial and the second more important and providing
insights to the detector’s HV behaviour:

1. Factors other than the detector voltage influence the charge trigger
rate (e.g. May 09, etc.).

2. The process of charge trigger generation is different in different voltage
regimes:

• Below 72 V, there is no detector instability or “breakdown,” and
increase in the noise will be exponentially suppressed at low volt-
age.

• Above 72 V, a “breakdown” process begins with a roughly power-
law trigger rate dependence.

We fit for this voltage breakdown point, V0, with the functional form
below:

TrigRate[Hz] =

{
B × exp[y × V ] : V < V0

B × exp[y × V ] +A× (V − V0)x : V ≥ V0
(4.2)

and obtained a best fit value of V0=72.3 V.
Because of this dependence, when the detector voltage increased above

72 V (in magnitude) at the beginning of April, both the trigger rate and
the observed noise became significantly worse. Two representative PSDs are
shown in Fig. 4.9, where the left plot comes from a series in March and the
right plot comes from a series in May. This figure shows that the noise from
0–1 kHz (the signal band) increased by a factor of ∼3 after Vdet increased
above 72 V, on April 1. In the Run 3 analysis, we consistently separate
data according to these two distinct detector noise environments and refer
to the two periods as R3a (which includes all series up to and including the
April 1st series 1150401 1411) and R3b. Different detector resolutions and
cut efficiencies are evident for the data obtained in R3a and R3b.
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Figure 4.9: Representative PSDs from R3a (left) and R3b (right). The
colored curves represent the noise on the individual channels, while the
black curve represents the channel sum.

4.4 Energy Scale

4.4.1 Energy Corrections

As explained in Sec. 2.3, we estimate the amplitude of the total phonon
pulse (the sum of the pulse from the 4 CDMSlite detector phonon channels)
using the OF algorithms. Then, as explained in Sec. 2.5, we convert the OF
amplitude to an energy using the 71Ge EC events. However, even after ap-
plying this simple calibration factor, the OF-based energy estimate required
correction for environmental and detector conditions.

In particular, we observed that the amplification of the detector drifted
by up to 30% over the course of Run 3. We found that we were able to cor-
rect for detector amplification drifts using known environmental variables.
Once the corrections were applied, the resolution of the K,L, and M shells
were comparable to expected resolutions from the Run 2 analysis. The fol-
lowing subsections discuss the environmental variables and other inputs to
the corrections.

Current Correction

Using the schematic in Fig. 2.16 we can solve for the detector voltage, relative
to the applied HV voltage, using the measured HV current:

Vdet = Vb − IHVRb. (4.3)

The main assumption going into the model shown in Fig. 2.16 is that all
the leakage current is downstream of the bias resistor, Rb. We directly show
that this is a reasonable assumption by verifying that the measured phonon
energy of electron recoil calibration peaks depends on the detector voltage
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Figure 4.10: The drift in the total phonon energy of the 10 keV line, with
the HV current correction prediction overlaid. The other energy scale cor-
rections have been applied to the data in order to highlight the corrections
from the HV current.

as

Et = Er(1 +
e Vdet

ε
) (4.4)

with Vdet defined in Eq. 4.3, and Er is the recoil energy. When we solve for
the expected total phonon energy of the 10 keV calibration line using a Vdet

that has been corrected by the measured leakage current IHV, we see good
agreement with the drift of the 10 keV line seen in the data, as shown in
Fig. 4.10. The maximum current reached is ∼120 nA which corresponds to
an almost 30% correction. The HV current correction is significantly larger
than the other energy corrections discussed below.

Base Temperature Correction

After the 10 keV line has been corrected by the HV current, the measured
energy shows a positive, roughly linear relationship with the cryostat base
temperature. Unlike the HV current correction, the magnitude of this cor-
rection has not been determined from first principles. We fit this dependence
to a straight line and then correct the energy variable in order to remove
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Figure 4.11: The steps of the linear base temperature correction. After
fitting a line in the Ecorr2 (y axis) vs. base temperature (x axis) plane,
the linear dependence is removed to form a corrected Ecorr3 variable. A
Gaussian fit of the K-shell events’ energies (as measured by Ecorr3) shows
the energy resolution.

the dependence. The correction is given by

Ecorr3(Tbase) = Ecorr2 × (1 + (Tbase − T̄base)× Cbase), (4.5)

where Ecorr3 is the base temperature-corrected energy, Ecorr2 is the energy
with just the HV current correction, Tbase is the base temperature, T̄base is
the mean base temperature over the course of the run, and Cbase is the slope
of the linear fit. A visualization of the base temperature correction steps is
shown in Fig. 4.11.

Position Correction

As discussed in Sec. 2.2.2, the position of the event in the detector affects
the reconstructed energy of the event. This is referred to as “position depen-
dence,” and it is corrected for in a number of ways. The standard method
employed by most iZIP detector analyses to reduce position dependence is to
use the non-stationary optimal filter algorithm (Sec. 2.3), which deweights
the beginning portion of the pulse where the pulse shape has the strongest
dependence on the event’s position. However, the non-stationary optimal
filter best-fit amplitude is still found to contain some residual position de-
pendence.

Figure 4.12 shows 10 keV events from the T5Z2 detector operated in
CDMSlite mode (single-sided readout) but at 0V. In this configuration,
position-dependent effects are expected to be particularly prominent be-
cause there are no NTL phonons, which spread phonon energy out in a
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Figure 4.12: Data from single-sided readout of T5Z2 at 0V. (left) Raw total
phonon traces plotted from 10 keV events. These events all have the same
energy (see alignment in the tail of the pulse), and the dark green-blue
traces are selected by their peakiness. (right) The high energy 0V spectrum
asymmetry in the 10 keV line, with the peakier 10 keV events highlighted
in cyan.

vertical column along the e−/h+ track and therefore reduce position depen-
dence. These data therefore serve well to demonstrate position-dependent
effects: the peakier pulses (blue-green traces in Fig. 4.12 left) are recon-
structed to a higher energy by the non-stationary optimal filter (cyan his-
togram in Fig. 4.12 right). Below we describe how we correct for the same
position-dependent effects in the CDMSlite Run 3 data.

The two template (2T) fast amplitude measures the peakiness of the
pulse and therefore is one measure of the position of the event. The vari-
ations in peaky vs. non-peaky pulse shapes, from the prompt phonons
described in Sec. 2.4, correspond to the proximity of the original recoil to
the phonon channels on the single side of the detector.

After the base temperature correction, as expected we see a positive
linear relationship between the the non-stationary optimum filter amplitude
and the 2-template fast amplitude. This correlation is shown in Fig. 4.13.
We approximate this dependence as linear, fit a line to the data, and perform
the following correction:

Ecorr4(2Tfast) = Ecorr3 × (1 + (2Tfast − 2T̄fast)× C2Tfast) (4.6)

where Ecorr4 is the 2-template fast amplitude-corrected energy, Ecorr3 is the
base temperature-corrected energy, 2Tfast is the 2-template fast amplitude
best fit, 2T̄fast is the mean 2-template fast amplitude best fit, and C2Tfast is
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Figure 4.13: The steps of the linear 2-template correction. After fitting
a line in the Ecorr3 (y axis) vs. 2-template fast amplitude (x axis) plane,
the linear dependence is removed to form a corrected ptNF variable. A
Gaussian fit of the K-shell in the corrected Ecorr4 variable shows improved
energy resolution.

the slope of the linear fit. The mean energy of the K-shell events does not
change with the correction, and the resolution improves from 4.21 keVt to
2.94 keVt.

The corrections discussed above with respect to current and temperature
are also applied to the fast amplitudes from the 2-template optimal filter fit.
The fast amplitude can be positive or negative and does not have a direct
correspondence to energy, and so the dependence of the fast amplitude for
the 10 keV events cannot be independently fit to variables (e.g. BaseTemp,
HV current) in the same way as the slow amplitude. Instead it is assumed
that the fast amplitude scales the same way as the slow amplitude, so we
apply the corrections based on the fits to the slow template distributions. In
Fig. 4.13, the “corrected 2-template fast amplitude” is corrected accordingly
before it is used in the final correction for energy correction.

4.4.2 Nuclear Recoil Energy Scale

A subtlety in the energy scale corrections arises because we have applied the
correction to all the data, but used ER events to derive the correction factors.
While the base temperature and the 2-template fast amplitude corrections
should not differ between ERs and NRs, the HV current correction does
depend on the recoil type because it depends on the ionization yield. The
energy scale has been corrected under the assumption that the ionization
yield equals 1. With a NR generating fewer free electrons, relative to an
ER of an equivalent recoil energy, the NTL gain will be less for the NR and
so the HV current/voltage correction factor will be smaller for the nuclear
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Figure 4.14: (left) Comparison of the correction factor for Y= 1 and Y =
0.15 events. Note that the difference in the correction factors is very small
for small IHV, but for Run 3, with a leakage current up to IHV =120nA, it is
clear that we should include this correction. (right) The maximum % error
on a NR energy estimate (Enr), if the total phonon energy (Ept) is corrected
without consideration of the ionization yield, which results in the nuclear
recoil energy incorrectly set higher than what it would be when properly
keeping track of the ionization yield in the HV current correction. The k is
the Lindhard k parameter for the yield.

recoils.
First we obtain the ER HV current correction in Eq. 4.4, which converts

a measured total phonon energy to a corrected total phonon energy:

Ept,corr|er =
[
Ept,uncorr

]/[
1− IHV ×Rb

ε/e+ Vnom

]
. (4.7)

The same calculation for nuclear recoils, now including the ionization yield
Y (Enr), as described in Sec. 2.1.2, gives:

Ept,corr
∣∣
nr

=
[
Ept,uncorr

]/[
1− Y (Enr)× IHV ×Rb

ε/e+ Y (Enr)× Vnom

]
. (4.8)

In Fig. 4.14 we estimate the maximum error (by using the maximum
current IHV =120 nA) that would be introduced in the NR energy scale if
we ignore the fact that our original HV correction assumed an ionization
yield of one. This error is the ratio of Eq. 4.7 and Eq. 4.8:

Enr,ignoring yield in correction

Enr,including yield in correction
=

1− Y (Enr)×IHV ×Rb
ε/e+Y (Enr)×Vnom

1− IHV ×Rb
ε/e+Vnom

. (4.9)
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Figure 4.15: The energy scale conversions for Run 3. The differences from
the Run 2 energy scalings, which are negligible only for small HV leakage
current, are circled in red.

In order to account for this systematic error, when converting from cor-
rected total phonon or electron equivalent energy to nuclear recoil energy,
first the Y = 1 HV current correction is undone, and then the correction
is reapplied with the accurate yield based upon the event energy. The full
energy calibration and correction flow chart is shown in Fig. 4.15.

4.5 Quality Cuts

4.5.1 Overview

As one of the first steps in our goal to look for a dark matter signal in the
data, we must remove events that (1) were not caused by a particle interac-
tion in the detector (which we refer to as “instrumental” events), (2) were
likely to be reconstructed improperly by our event fitting algorithms, or (3)
were recorded when the detector was behaving anomalously. In the process
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of removing these “bad events” with cuts, it is inevitable that some good
events are also removed, and we account for this effect by computing the
“signal efficiency” of these cuts. Throughout this section, we seek to define
cuts that maximally reject the bad events but minimally reject good events,
thereby maximizing the signal efficiency and increasing the DM sensitivity
of the analysis.

Because this analysis employs profile likelihood methods to search for
DM—fitting background and signal models to events that pass all cuts—it
is imperative to identify and remove all instrumental noise events whose dis-
tributions cannot be modeled with a probability distribution in the fit. In
the lowest energy range of the analysis, where the experiment is most sensi-
tive to DM particles with mass < 10 GeV/c2, the instrumental background
is the highest. In this section I describe the different selection criteria to
remove the more conspicuous types of instrumental noise events. In the next
section, Sec. 4.6, I will describe the use of multivariate techniques to reduce
instrumental noise leakage to less than 1 event while maintaining as low of
an energy threshold as possible.

4.5.2 Prepulse Noise Cut

The raw data traces have been read out such that the bin8 that caused the
trigger is the 500th bin of the trace (out of a total of 4096 bins), which is
depicted in the example pulse in Fig. 2.5. The bins before this triggering bin
are referred to as the “prepulse.” Because the prepulse precedes the upward
fluctuation that caused the trigger, it is useful for characterizing underlying
“baseline” noise that exists in each channel. The standard deviation of the
prepulse data points is recorded for every channel for every event. The
distribution of the prepulse standard deviation of the randoms is fit to a
Gaussian for each series (a roughly 3 hour period of time in which the
SuperCDMS DAQ divides blocks of data), as shown for an example series
in Fig. 4.16 left. Events whose prepulse standard deviation is outside the 4σ
range in any channel are removed by this cut, and the full Run 3 trend of
prepulse baseline noise is shown in Fig. 4.16 right. Events that are removed
have anomalously bad LF noise, electronic noise, or are pileup events. When
applying the prepulse noise cut alone, the efficiency of this cut was found to
be high, greater than 99% for nearly all series.

8The bin width is set by the digitization rate of the signal and is 0.8 µs, as previously
provided in Table 2.3.
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Figure 4.16: (left) The distribution of the prepulse standard deviation of the
randoms for a single series, with a Gaussian fit to the distribution overlaid.
(right) The trend of fitted Gaussian σ for all Run 3 series.

4.5.3 Bad Series Cut

We remove series which had particularly poor noise performance or anoma-
lous detector behavior with this cut. Shortly after the start of Run 3 there
was a brief attempt to lower the hardware trigger threshold. Because this
effort was unsuccessful (was met with high trigger rates) the lower threshold
period only afflicted 6 series. These series are removed by this cut. Addition-
ally, series with high trigger rates due to cold trap cleanings or immediately
following detector calibrations were also removed. This cut removed only 11
series total, out of a total of 600 series. The livetime removed by this cut
was less than 1% of the total Run 3 livetime.

4.5.4 Phonon Pulse-Shape Cuts

Information from pulse-shape fits can discriminate signal events from in-
strumental noise events having a characteristic pulse shape. Six different
templates are fit to each event using the optimal filter method: a signal
template, a square pulse template, an electronics glitch template with fast
rise and falltimes, and three low-frequency noise (LF noise) templates. The
signal, square pulse, and electronics glitch templates are shown in Fig. 4.17.
The glitch and square templates were created iteratively in the following
steps:

1. identifying, by eye, instrumental noise events in the data set

2. averaging the noise events to obtain a rough approximation of the
instrumental noise events’ shape
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Figure 4.17: Comparison of glitch and square templates with the good
phonon template. While the square template only roughly resembles a
“square” shape, we refer to it as square because it is different from the
glitch pulse primarily in that it plateaus for 300µs, which it makes it wider.

3. processing the entire dataset with the rough templates

4. using χ2 information from the fits of the templates to the data, iden-
tifying all instrumental events that resemble the instrumental noise
templates

5. normalizing and averaging all the instrumental noise events resembling
either a glitch or square pulse into an improved (e.g. higher statistics)
template

For the LF noise, three different templates were created because the LF
noise assumes different pulse shapes, as discussed in Sec. 4.6.4.

The OF algorithm outputs a goodness of fit χ2 (that is smaller when the
template is a good fit to the raw data trace), and therefore the difference
of χ2, or ∆χ2, between an OF fit with a “good event” template and an
“instrumental” event template is a good indication of whether an event is an
“instrumental” event. In fact, for consistent shapes of the instrumental noise
pulses (i.e. pulse shapes that match the template) and Gaussian noise, this
∆χ2 parameter is the optimal way to discriminate instrumental background
from signal. The ∆χ2 parameter is defined as:

∆χ2
LF,glitch,square ≡ χ2

OF − χ2
LF,glitch,square, (4.10)

where OF corresponds to the standard signal-template fit, and LF, “glitch”
and “square” correspond to the fits using the LF noise, glitch and square

105



4.5. Quality Cuts

Figure 4.18: (left) An example of a glitch event with the best fits of the
good event and glitch template to the event overlaid. (right) An example of
a LF noise event with the best fits of the good event and LF noise template
to the event overlaid.

pulse templates respectively. Lower values of ∆χ2 indicate events that have
a more signal-like shape.

Glitch events (for example the event shown in Fig. 4.18) and square
events have relatively uniform pulse shapes and do not resemble the signal
pulse shape. Therefore, a single template for each is sufficient to efficiently
discriminate against these event types.

Every phonon chi-squared based cut boundary was defined not just based
on the ∆χ2 value, but also based on the events’ reconstructed energy (i.e.
ptOF). It is important to incorporate the event energy in the determination
of the cut boundary because discrimination between signal and instrumental
background is much more difficult at lower energy. The distribution of ∆χ2

values for good events varies as a function of ptOF, and has a downward
sloping parabolic shape, as shown in Fig. 4.19 left, so the cut boundary
correspondingly takes on a parabolic shape in the ptOF vs. ∆χ2 plane.

Series Blocks

Just as the distribution of ∆χ2 values for good events changes as a function
of ptOF, it also changes as a function of time. This motivates the division
of the R3 data set into blocks of series, each of which having a custom cut
boundary in the ptOF vs. ∆χ2 planes

Initially it was not obvious why the ptOF vs ∆χ2 distributions varied
in time. The parabolas consist of good events that should not change pulse
shape over the course of the run, so why does the parameter that fundamen-
tally measures pulse shape (it depends on pulse shape based on χ2 values)
vary in time for these good events? The origin of the variation is explored by
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Figure 4.19: (left) The distribution of good events in the ∆χ2
glitch vs. ptOF

plane, and (right) the same data reprocessed with a single noise PSD, show-
ing that the variations are due to the PSDs that change for each series.

noting that, while the pulse shape should not change for these good events,
the noise PSD that is used in the optimal filter fit changes on a series-by-
series basis, and so we hypothesized that the time variations were due to the
different PSDs used in the fit. The OF fits for each series are carried out
with a noise PSD calculated from random events from that series. Figure
4.19 right shows the ptOF vs. ∆χ2

glitch plane for the same group of events as
shown in 4.19 left, but processed with a single PSD; the single “good event”
parabola in this plane shows that all of the variations are a result of the
varying PSDs.

It still makes sense to use different PSDs for each series because incorpo-
rating the variable noise environment into the OF fits will obviously result
in better fits. However, this deficiency in the data processing necessitated
dividing up the Run 3 dataset into series blocks.

In addition to dividing the R3 dataset based on calendar time, it proved
beneficial to divide the dataset based on the cryocooler vibration phase
variable. Because this variable is correlated with the intensity of the low
frequency noise environment on an event by event basis, data block divisions
were created such that periods with particularly bad noise were isolated from
the rest of the data set and harsher cuts could be defined for the noisier
blocks.

To form the division boundaries, each series was first divided into a
“loud” and “quiet” section based on the cryocooler vibration phase variable.
Then, each series was characterized in three different ways:

1. The distribution of events in the ptOF vs. ∆χ2
glitch plane was fit to a

parabola and the slope of the parabola was recorded.
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Figure 4.20: (top) The ∆χ2
LF vs. ptOF plane for a portion of the Run 3

data, showing a high concentration of LF noise events. Raw pulse inspec-
tion revealed that only a small fraction of data points in this plot (those
data point at the lowest ∆χ2

LF values) resembled good events. The ∆χ2
LF

parameter is calculated with “template 1” as shown in Fig. 4.26. (bottom)
The parabolic fit coefficient in the ptOF-∆χ2

LF plane vs. 3.5σ contour area,
with the clusters shown.

2. The distribution of events in the ptOF vs. ∆χ2
LF plane was fit to a

parabola and the slope of the parabola was recorded.

3. The 3.5σ contour area of the LF noise events in the ptOF vs. ∆χ2
LF

plane (shown in green in Fig. 4.20 top) was recorded.

We designed a method for grouping series together according to the char-
acteristic variables above, where the purpose of grouping series was to allow
for the development of a cut boundary specifically for the series that well
into that group. This method uses the k-mean clustering algorithm, which
clusters series together that are close to eachother in the three dimensional
space of parameters listed above.

The k-means clustering algorithm picks k centroids in an n-dimensional
space, assigns each data point to a centroid, and finds the distance between
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the points and the centroid looping over all centroids [103]. The program
then iterates by moving around the centroids until the distance between the
points and the centroid are minimized.

In deciding how many clusters to use, there is a tradeoff between many
clusters (and capturing smaller changes in the distribution of events in the
cut variables) and few clusters (and having good statistics with which to
define the cut). For the cryocooler loud selection, with greater than 9 clusters
the statistics become lacking in the cluster with the largest contour area. For
the cryocooler quiet selection, using greater than 8 clusters only marginally
shifts the divisions in the higher contour area clusters, and so 8 clusters are
chosen for the crycooler quiet selection. The clustering groups are shown for
the cryocooler loud series blocks in Fig. 4.20, where for this visualization the
three dimensions of the clustering are projected into the ∆χ2

LF vs. contour
area 2D plane.

All the series blocks are also shown in Fig. 4.21 right. Figure 4.21 left
shows events in the cryocooler vibrational phase fit to a 2 Gaussian + flat
distribution. One Gaussian is fit around the region of largest event density
(from 0–0.2 seconds), and the 2σ bound of the Gaussian is selected and
included in the cryocooler “loud” category. If a second peak exists in the
crycooler phase variable (which it does for a number of the series in April),
a second Gaussian is fit to the second event density (from 0.3–0.4 seconds),
and the 1σ bound of the Gaussian is selected and included in the cryocooler
“loud” category.

Pulse Shape Glitch Events

The origin of “glitch events” has been explained as electronic noise in the
TES bias circuit that generates spiky pulse triggers with rise and falltimes
faster than typical events, with time constants set by the TES response as
opposed to phonon absorption times in the detector, as described in [104]
(p. 197).

A cut boundary with two components was defined in the ptOF vs.
∆χ2

glitch plane for the 17 Run 3 series blocks. The first component was
a flat cut as a function of energy and was defined using random triggers so
that >90% of randoms passed; this ensured that the cut has roughly 90% or
greater signal efficiency at low energy. The second component was parabolic
as a function of energy corresponding to the distribution of good events in
the ptOF vs. ∆χ2

glitch plane. First a parabola was fit to all the triggered (i.e.
non random) events in the series block, shown in Fig. 4.22 as the “central
fit” parabola. Then the residuals of the ∆χ2

glitch values for the parabolic fit
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Figure 4.21: (top) The maximum likelihood estimate best fit of 2 Gaussians
plus a flat distribution to noise events in a single series. (bottom) The 9
cryocooler “loud” clusters, and 8 cryocooler “quiet” cluster, all highlighted
by time.
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Figure 4.22: (top) A raw trace for a glitch-like event that fails the cut.
(bottom) The tuning of the parabolic portion of the cut based upon the
parabola of good events, for series block 15.

and the data were binned by energy and a Gaussian was fit to the residu-
als, depicted as the red error bars in Fig. 4.22. Finally, a second parabola
was fit to the µ+Nσ point of a Gaussian fit to events in each energy bin,
where N was tuned for each of the 17 series blocks on the basis of raw trace
examination. For series block 15, we used N=4 and the second parabola is
given by the green “cut fit” line in figure 4.22, which defines the location of
the cut. Fig. 4.22 left shows an example glitch event that is rejected by this
cut.
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Figure 4.23: (left) The total phonon pulse of the square pulses. (right) the
∆χ2

square parameter formed from the square template.

Square Pulse Cut

This type of glitch has a fast rise and falltime, but its pulse shape is poorly
approximated by the standard glitch template because the signal plateaus
for ∼200µs at a maximum value before steeply falling. The total phonon
traces from 10 example square pulse events are in Fig. 4.23. Because these
events are not efficiently discriminated against with the glitch template, a
custom template (which roughly resembles a square shape), was created to
identify these events with a ∆χ2

square parameter.
When events are plotted in the ptOF vs. ∆χ2

square plane, Fig. 4.23 right
shows a clear cluster of square events at high ∆χ2

square that are separated
from the good event distribution, allowing for a highly efficient cut to be
made in this plane. Note that in this plot, all data quality cuts other that
the spot cut and multiples cut have been applied. A parabolic cut boundary
was defined in the ptOF vs. ∆χ2

square plane for the 17 Run 3 series blocks.

4.6 Low Frequency Noise Cuts

4.6.1 Motivation

The majority (>75%) of events in the Run 3 dataset are a result of low
frequency noise fluctuations in the phonon signal that cause the detector to
trigger. These events are particularly difficult to discriminate against for
two reasons:

1. The dominant frequencies of good phonon pulses are relatively low
(<1.25 kHz) and so their bandwidth overlaps the LFN event band-
width. The frequency band overlap can be seen clearly in the time
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domain in Fig. 4.18 right. This makes optimal filter pulse fitting less
efficient for discrimination.

2. Unlike glitch and square events, the shape of LFN events is inconsistent
and so a single LFN template does not produce a good fit for all LFN
events.

These challenges become increasingly difficult to overcome as one tries to
discriminate to lower energies, where the signal-to-(baseline) noise becomes
low enough that the signal from an actual energy deposition and the fluc-
tuation from a LFN feature are sufficiently buried under baseline noise that
the small bump in the trace that caused the trigger could be attributed to
either source.

Figure 4.24 demonstrates this challenge clearly: when the simulated good
event signal is plotted on top of the data (which is dominated by LF noise
triggers at low energy) in the ptOF vs ∆χ2

LF plane, we see significant overlap
of the two distributions. The overlap is especially bad in the energy region
between the 50% trigger point (the lowest possible analysis threshold, dis-
cussed futher in Sec. 4.9.2) and 2.2keVt. This is problematic because to
set a cut with good signal passage near the 50% trigger point, we would
also need to pass a large number of LF events. At the same time, a cut
that removes the majority of the LF events has very low signal passage and
effectively moves the analysis threshold above 2.2keVt because of its low
efficiency. In the sections below, we describe the Run 3 campaign to remove
this background from the dataset, which involved separate cuts for high and
low energy events, as well as a multivariate boosted decision tree approach
to improve discrimination in the low energy range.

4.6.2 High Energy LF Noise Cut

Section 4.6.1 described why LF noise discrimination becomes increasingly
difficult at low energies. Therefore, at higher energies where discrimination
is easier, a simple cut based on a ∆χ2

LF parameter from a LFN template
was designed to remove LFN that reconstructed above 5 keVt. This 5 keVt

value was determined so that a cut could be defined and have nearly 100%
efficiency for good phonon events. The high energy LFN cut was defined
individually for the 17 series blocks (following the same procedure as for the
glitch and square pulse cut).

113



4.6. Low Frequency Noise Cuts

Figure 4.24: The simulated signal (blue data points) significantly overlaps
the LF noise background (the majority of the red data points) at low energy
in this variable plane.

4.6.3 Detector-Detector Correlations

To try to solve the signal-noise overlap problem shown in Fig. 4.24, we look
for parameters other than the ∆χ2

LF to efficiently identify and reject LF
noise near threshold.

Because the LF noise originates from vibrations in the experimental
setup, and because the vibrational sources producing LF noise triggers
should couple to all detectors in a tower, we examined the correlations
between the phonon waveforms on the CDMSlite detector and the other
detectors in the tower.

In order to measure the correlation between raw total phonon traces, we
use the Spearman correlation statistic [105], which is the same as the stan-
dard correlation statistic, except that the Spearman statistic ranks arrays
(which in this application are the time domain traces) before calculating
the correlation. “Ranking” is a simple transformation of an array where the
value is replaced by the index of that value when the array is sorted from
lowest to highest. For example, for the array V = [4, 8, 9, 1], the ranked array
is rgV = [2, 3, 4, 1]. Then the general definition of the Spearman correlation
coefficient between arrays X and Y of length N is

rs =
cov(rgX, rgY)

σrgXσrgY

=

∑N
i (rgX,i − r̄gX)(rgY,i − r̄gY )√∑N

i (rgX,i − r̄gX)2
√∑N

i (rgY,i − r̄gY )2
, (4.11)

where rgX and rgY are rank variables. σrgX is the standard deviation of the

114



4.6. Low Frequency Noise Cuts

Figure 4.25: (left) Example traces showing detector correlated LF noise
on the three Tower 2 detectors (top:T2Z1, middle: T2Z2, bottom: T2Z3).
(right) Comparisons of signal and background distributions in the T2Z1-
T2Z2 detector trace correlation parameter.

ranked variables, and r̄gX is the average of the ranked variable. The Spear-
man correlation coefficient, as opposed to standard correlation coefficient,
was used because it measures monotonic relationships in general as opposed
to just linear relationships. Using the more general statistic was justified
since we wouldn’t expect purely linear detector-detector LF noise correla-
tions. The correlation coefficient will be a number between −1 and +1, with
−1 being maximally anticorrelated, +1 being maximally correlated, and 0
being uncorrelated.

The Spearman correlation parameter between the time stream wave-
forms on the CDMSlite detector and the other detectors in the tower, for
the events between the 50% trigger efficiency (1.29 keVt) and 3 keVt, is
shown as the red histogram in Fig. 4.25 right. These events are in the re-
gion of signal-background overlap shown in Fig. 4.24, many of which are LF
noise events,

In contrast to a LF noise trigger on T2Z1, a good event from a true
energy deposition on T2Z1 should not be strongly correlated with the LF
noise on the other detectors. We simulate the distribution of correlation
coefficients for good events using the pulse simulation approach described
in Sec. 4.9 for the pulses on T2Z1. On the other detectors, T2Z2 and T2Z3,
we leave the randoms unchanged and calculate the correlation parameter
between the simulated pulse on T2Z1 and the random noise event on the
other two detectors. The cyan histogram in Fig. 4.25 shows the T2Z1-
T2Z2 correlations when the simulation uses randoms acquired at the end
of the series. The event separation seen between the red (primarily LF
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noise) and cyan (signal) histograms is insufficient for setting an efficient
cut in the correlation variable alone, but the separation between histograms
indicates that the correlation parameters carry discrimination information.
Therefore, as described in Sec. 4.6.5, we used the correlation parameters
in a multivariate signal-noise separation boosted decision tree algorithm to
improve the LF noise cut.

The names we use for the Spearman correlation variables are either
“T2Z1-T2Z2 correlation” / “T2Z1-T2Z3 correlation” or, for brevity, “z4z5
correlation” / “z4z6 correlation”.

4.6.4 Motivation for Multiple Templates

SuperCDMS Soudan iZIP analyses generated the instrumental noise tem-
plates [106], and were able to use a single template for each class of instru-
mental noise to remove instrumental backgrounds from the dataset. Because
of the Run 3 analysis’s goal to search for a DM signal to as low of an energy
threshold as possible, and because of the particular importance of removing
LF noise at low energies, we explored the use of multiple LF noise tem-
plates in order to improve the characterization of the LF noise that assumes
different pulse shapes.

Development of new templates was also motivated because, when we
average many low frequency noise total phonon traces on T2Z1 from the
Run 3 dataset, the shape of the resulting average trace deviates from the
low frequency noise template developed for the earlier SuperCDMS Soudan
iZIP analyses. As shown in Fig. 4.26, the template developed in the iZIP
analyses (magenta) does not have the ∼600Hz oscillation that is seen in the
average of many low frequency noise total phonon traces (black).

Figure 4.27 shows that the ∆χ2
LF parameter based on the black template

(template #2) improves discrimination between signal and LFN background:
with the same data selected, there is increased separation of the blue (signal)
and red (background) data.

In addition, because the 600Hz mode is seen so strongly in T2Z1 and
the other Tower 2 detectors, as shown in Fig. 4.28, we test a discrimination
parameter using the amplitude and ∆χ2

LF fit values of a template isolated to
this frequency. Averaging the Fourier transform of the individual LF noise
traces shows a peak at 602.7 Hz with a phase of 114.6 degrees relative to the
start of the trace. This phase offset is observed to be relatively constant,
as expected, since the upward fluctuation of the noise causes the trigger.
The resulting time-domain template is shown in Fig. 4.26 (left), labeled
“template 3.”
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Figure 4.26: (top) Three different LFN templates used to fit different low
frequency noise shapes on T2Z1. (middle) The averaged amplitude of the
Fourier transform of the LFN traces. In the red curve, the time domain
traces had zeros added to the front and end of the trace before the Fourier
transform, which is a trick to to improve the δf resolution of the Fourier
transform. (bottom) The phase of the black LF noise template.
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Figure 4.27: (left) The ∆χ2
LF vs. ptOF plane for the data, shown in red,

and the simulated signal, shown in blue, when using template #1 to fit the
raw traces. (right) equivalent to figure left but using template #2, showing
improved separation between the data (which consists primarily of LF noise
events), and the signal.

Figure 4.28: The average of LF noise events showing a coherent shape (since
incoherent noise would average to roughly 0 on the y-axis) on T2Z1 (left)
T2Z2 (center) and T2Z3 (right).
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4.6.5 Boosted Decision Tree (BDT)

A boosted decision tree is a well-suited algorithm to reduce the multiple
LF noise parameters into a single BDT parameter (a score between −1 and
+1) that maximizes the separation of signal from background. The primary
“handles” on LF noise are:

1. the three ∆χ2
LF parameters from pulse shape fits to the three different

LF noise templates.

2. the t̂− variable, which represents the time since the last cryocooler
cycle. The cycle period is ∼0.83 seconds and LF noise causes triggers
more frequently in the ∼0.2 seconds after the start of the cycle, with
the remainder of the cycle containing fewer LFN triggers.

3. the correlation of the phonon waveforms between the CDMSlite de-
tector and the other detectors in the tower, because the vibrational
sources producing LF noise triggers couple to all detectors in a tower.

More specifically, we use a BDT as a LF noise classifier to find a cut by
reducing a multidimensional space down to a one dimensional space where
signal and background are well separated. There are many options and
different types of BDTs to use, and because only very small performance
differences were observed when testing different BDT algorithms, we choose
the Adaboost algorithm [107, 108]. The algorithm reduces overtraining using
“ensemble methods,” by forming many trees of low dimensions (2 or 3) and
combining the results of these trees so that the classification of a single event
depends on all the trees.

Optimizer Fine Tuning

In the two-level decision tree shown in Fig. 4.29, the bluer boxes are more
signal-like, and the red boxes are more background-like. At every division
of the tree, the population of events is divided based upon the variable that
will maximally separate signal from background (computed with the gini
index [109]). When using the Adaptive boosting method, at the lowest level
of the tree, events that have been misclassified are increased in weight and
supplied to additional small decision trees. The number of weak decision
trees used in the algorithm is set by the analyzer, and should be determined
by examining the error rate (the fraction of misclassified event) as a function
of the number of decision trees. Once the training data sample has flattened
on this plot, additional weak learners will not find additional correlations in
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Figure 4.29: (left) A two-level decision tree. (right) A diagnostic plots of
the error rate, for both training and test data, to help select the optimal
number of weak decision trees.

the parameter space and therefore not improve discrimination. One strong
indication of overtraining is that the test data curve increases. The number
of weak decision trees was chosen to be 8000, which ensured that the error
rate for the test data did not begin to increase.

Full BDT

In addition to providing a powerful discrimination parameter, the BDT
framework provides flexibility that allowed for avoidance of the series block
data division procedure described in Sec. 4.7. While the series blocks based
on calendar time and cryocooler vibrational phase were critical for the 2D
ptOF vs. ∆χ2 based cuts, for the BDT, instead of incorporating cryocooler
information by dividing the data set according to cryo-loud and cryo-quiet
time periods, it makes sense to to include the cryocooler score as a BDT
input. Similarly, instead of dividing the data set according to calendar time,
we can include the event time as a BDT input and the BDT will make a con-
tinuous cut based on the event time as opposed to our previous 17 discrete
blocks approach.

At the same time, dividing the series up into time periods proved very
useful when monitoring the detector’s noise environment, and so below we
consider the Run 3 data set in two different periods, divided into Run 3a
and Run 3b as described in Sec. 4.3.4. The key reason for doing this is not
because the BDT would be unable to find a LF noise correlation in calendar
time and set the cuts accordingly. Instead, the reason for dividing the data
along Run 3a and Run 3b is because the nature of the background changes
between the two periods. Whereas LF noise makes up the majority of low
energy triggers in Run 3a, in Run 3b charge triggers and LF noise each
make up roughly 50% of the low energy triggers, as shown in Sec. 4.3.4 and
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in particular Fig. 4.6. It is simple to understand that BDT performance
will be suboptimal if it is designed to discriminate against LF noise events,
but the background is made up a combination of charge trigger events and
LF noise events. We overcome this issue by training BDTs separately for
Run 3a and Run 3b. For the Run 3b data, the analysis threshold is raised
from 1.29 keVt to 1.9 keVt in order to eliminate the charge leakage trigger
background (which reconstructs to energies below 1.9keVt).

Therefore, the full BDT score discriminator is based on 8 different param-
eters: (1) cryocooler phase (2) z4z5 correlation (3) z4z6 correlation (4)(5)(6)
∆χ2

LF parameters for 3 different templates, (7) event time, and (8) energy,
and the BDT is tuned for the two distinct time periods. The feature discrim-
ination power of each of these parameters is shown in Fig. 4.30 for the Run 3b
BDT. It is clear that the detector-detector correlations and cryocooler infor-
mation improves discrimination, even though the ∆χ2

LF parameters provide
the best discrimination.

Figure 4.30 right also shows the R3b BDT score vs. energy, where a
population of good events is separated from the high density population of
events made up of LFN triggers. What is also apparent, however, is that
below ∼3keVt the distribution of events at higher BDT score begins to merge
into the population at lower BDT score, again showing that discrimination
is more difficult at low energy. It is not obvious from this plot where to
place a cut on BDT score in order to maintain signal acceptance down to
as low of an energy as possible, while simultaneously not accepting a LF
noise event. In Sec. 4.7 below, we describe a procedure for splitting up the
BDT score of Fig. 4.30 into two BDTs and setting a cut to ensure LF noise
background leakage to less than one event.

4.7 Bifurcated Analysis

The bifurcated analysis is a method to measure the number of events from a
certain background that is leaking past a set of quality cuts. The framework
is suited for measuring leakage of a background that is difficult to model
because neither a spectral energy shape (a PDF) of the background nor a
background rate estimate is needed to employ it. The method estimates the
leakage using side band information (i.e. information outside of the signal
region)[110, 111].

Therefore, the bifurcated analysis is attractive when considering the
Run 3 analysis goal to understand the background at the lowest energies
where the dominant source of events is difficult-to-model LF noise triggers.
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Figure 4.30: (top) The feature discrimination power of different BDT pa-
rameters, which is calculated using the amount that each feature split point
improves the sample purity, weighted by the number of data points in the
branch of interest, and summed over many decision branches. (bottom) The
Run 3b BDT score as a function of energy, showing good separation of a
small collection of signal events from the population of noise events .
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Figure 4.31: The CDMSlite R3 low background WIMP-search spectrum
with a relatively loose cut placed on the LF noise BDT score. We seek to
answer how many of the low energy events are LF noise triggers as a function
of the cut value, and then set a cut such that there is <1 event leakage.

In particular, the LF noise cut must have a low (<1 event) leakage of LF
noise triggers past the cut. If LF noise trigger events leak in significant
quantities past the cut, the background model will not describe the data.
This is because the background model only includes components that de-
scribe particle energy depositions in the detector from radioactive decays.
Figure 4.31 shows an example of an event spectrum with a relatively loose
LF noise cut, where some LF noise events are present in the spectrum. If
LF noise events leak past the final cut, they will be incorrectly incorporated
into the PDF of a different background, and the likelihood fit for background
and DM signal components will be systematically biased.

4.7.1 Introduction

The number of LF noise events leaking past a set of cuts is given by:

Nleak = NLF · P (cuts), (4.12)

where P (cuts) is the passage fraction of the cuts and NLF is the number of
LF noise events. While both NLF and P (cuts) are unknown, they can be
estimated if there exist two uncorrelated sets of cuts that are both sensitive
to LF noise events. The cuts are uncorrelated if cut A removes the same
fraction of background regardless of whether cut B has been applied, and
vice versa.

The two uncorrelated cuts that are both sensitive to the background
of interest are labeled as cut A and B. Then events are divided into the
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Figure 4.32: The 4 boxes into which events are divided when two bifurcated
cuts (cut A and cut B) are applied to the data. The number of events in the
upper left box (NAB) represents the number of events that pass both cuts.

4 different categories of passing and failing the cuts, which are shown in
Fig. 4.32. The AB box, which is the region of the parameters space that
both cut A and cut B accept, is in the upper left. The number of events
in the signal box is NAB. Two types of events will be in the signal box:
(1) good pulses from real energy depositions in the detector which we label
NSIG and (2) low frequency noise triggers which we label NLEAK .

In order to solve for NLEAK , we must know the passage fraction of cut A
and cut B to the background, which we label P (AB). We also must know the
signal efficiency9 of the two cuts, labeled S(AB). Making the uncorrelated
cut efficiency assumption, an assumption that is tested in Sec. 4.7.3 and
4.7.4, P (AB) = P (A)P (B) and S(AB) = S(A)S(B). We also define NBKG

such that NSIG+NBKG is the total number of events in all 4 boxes: NSIG+
NBKG = NAB +NĀB +NAB̄ +NĀB̄. We also define P (Ā) as the rejection
fraction of the background (i.e. P (Ā) = 1 − P (A)), and use the equivalent
notation for cut B and for the signal efficiency S. The number of events in
the individual boxes is therefore given by:

NAB = S(A)S(B)×NSIG + P (A)P (B)×NBKG (4.13)

9Throughout this section “signal” refers not necessarily to a DM signal, but rather any
event that is not a LF noise background event.
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NAB +NĀB = S(B)×NSIG + P (B)×NBKG (4.14)

NAB +NAB̄ = S(A)×NSIG + P (A)×NBKG (4.15)

NĀB̄ = S(Ā)S(B̄)×NSIG + P (Ā)P (B̄)×NBKG (4.16)

We numerically solve the 4 equations above for the 4 unknowns: P (A),
P (B), NSIG, NBKG. Then the number of background events leaking into
the signal box can be solved for, and is given by:

NLEAK = P (A)P (B)×NBKG. (4.17)

If the bifurcated cuts are 100% efficient to signal the above system of
equations can be analytically solved to give:

NLEAK =
NAB̄NĀB

NĀB̄

, (4.18)

but because we can determine the values of S(A) and S(B) from pulse
simulations of good events, and they are <100% efficiency, we numerically
solve the system of equations and apply Eq. 4.17.

4.7.2 Application to CDMSlite Run 3

The BDT-based discrimination discussed in Sec. 4.6.5 is particularly well
suited for the bifurcated analysis application. First, the bifurcated analysis
is designed to work in two dimensions (i.e. the two dimensions on which the
two cuts, A and B, can be placed), and a BDT reduces the dimensionality of
the discrimination parameters from N inputs to a single output. Therefore,
training two BDTs reduces the eight-dimensional discrimination parameter
space to 2 dimensions that can be used for the bifurcated analysis.

Second, the bifurcated analysis is designed to work when the A and B
cuts are uncorrelated. For the LF noise cut we have developed parameters
from 3 different sources that all have LF noise discrimination power but
are not necessarily correlated—(1) detector signal correlation information,
(2) cryocooler information, and (3) pulse shape information with the ∆χ2

LF

parameters. To proceed with the bifurcated analysis we split up this infor-
mation into two BDTs that each discriminate against LF noise but do so
using parameters in which we would not expect there to be extreme corre-
lations.
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The eight LF noise discrimination parameters are used in two different
BDTs with the goal of creating BDT outputs that are good discrimina-
tors but uncorrelated. Branch A is primarily ∆χ2 based and Branch B is
primarily cryocooler and detector-detector correlation based, although the
decision of which parameters to use in which branch was ultimately made
empirically. That is, different arrangements of parameters were tested until
an arrangement that yielded uncorrelated BDT outputs was found. For this
reason the template 3 ∆χ2

LF parameter is not in the same branch as the
other ∆χ2

LF parameters, and the division of parameters is given below:

• branch A

– ∆χ2
LF- template 1

– ∆χ2
LF- template 2

– Event Time

– energy (ptOF)

• branch B

– cryocooler phase

– T2Z1-T2Z2 correlation

– T2Z1-T2Z3 correlation

– ∆χ2
LF- template 3

– Event Time

– energy (ptOF).

Figure 4.33 left shows the BDT output of the two different branches.
There is a population of events in the upper right of the plot for which the
output of the two BDTs are clearly correlated between the two BDTs. These
are signal events and it is an indication that the two bifurcated BDTs are
successfully discriminating; they are together separating events that the full
BDT (indicated by the color) also separates with high BDT score. More
importantly for the bifurcated analysis to work, the LF noise background
(at lower BDT score) should be uncorrelated between the two cuts. The
high density of events at significantly lower BDT score (<0) is correlated
between the two branches. This agrees with intuition, since very bad LF
noise can be identified based on ∆χ2

LF information as well as cryocooler or
detector-detector correlation information. In order to apply the bifurcated
analysis, additional cuts can be defined to select events closest to the cut
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boundary (where it’s most important to measure event leakage) and as will
be shown robustly below, the cuts are uncorrelated in the region of the BDT
values where there is risk of LF noise events leaking past the cut.

Setup Cut Verification

In the bifurcated analysis framework, “setup” cuts are those that are applied
to the data before performing the bifurcated analysis. In this case our setup
cuts include all of the quality cuts described in Sec. 4.5, as well as a simple
LF noise setup cut that removes particularly bad LF noise. The location of
the setup cut, which is defined on the full BDT score, is shown in Fig. 4.33
center. This location was chosen to remove events that are sufficiently bad
LF noise triggers that they can be taken out of the bifurcated analysis
because they will not leak into the signal region. The events surviving the
setup cuts—the events that will be used in the bifurcated analysis—are
shown in black in Fig. 4.33 right.

By first looking at the population of events that fail the full BDT setup
cut, shown in Fig. 4.34, we see that they are removed from the AB box.
However, because there are nearly 2× 106 events that make up this popula-
tion, we’d like to check that the tails of the distribution do not extend into
the AB box. A 2D kernel density estimate is used to approximate the distri-
bution [112]. The bandwidth of the kernel—the width of the Gaussian that
is added to each data point—is chosen automatically by the functions such
that the density estimate is optimal for normal densities. When the KDE is
found using this default bandwidth, the density is integrated over the signal
region, and 0 events are found to be entering into the signal region.

4.7.3 LF Noise Background Correlation

Our full data set contains signal and background events. We would like
to calculate correlation coefficients for the data from the background dis-
tribution only, but it is unknown which data points come from which dis-
tribution. However, we know the shape of the signal distribution, defined
as PS . We also can estimate the magnitude of signal and background data
in the full data set, allowing us to define the distribution of all events as
Pfull = PB + NS

NB
PS . Using this information we can subtract off the effects

of the signal data and calculate correlation coefficients for the background
PB distribution alone.

To keep with standard convention for 2D correlations/covariances, we’ll
label branch A as X and branch B as Y. Using Pearson’s correlation co-
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Figure 4.33: (top) The two branches of the bifurcated BDTs of Run 3a data,
colored by the full BDT score. (middle) The setup cut value in the full BDT
score. (bottom) The distribution of events considered for the bifurcated
analysis shown in black, with those rejected by the setup cut shown in blue.
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Figure 4.34: The distribution of events failing the setup cut, characterized
with a kernel density. Integrating the kernel density into the signal region
gives 0 events.

efficient, ρX,Y = cov(X,Y )
σXσY

, we need to first calculate the covariance of the
background distribution and we start with the signal data covariance:

covS(X,Y ) =

∫ ∫
dxdy(x− µx|B)(y − µy|B)PS(x, y). (4.19)

Equation 4.19 differs from the standard covariance equation only in that the
µx|B and µy|B terms are the means of the background-only variables. The
background distribution is unknown but these means can be estimated by
using the full and signal means, µfull and µS , with the relationship:

µfull =
NS

NB +NS
µS +

NB

NB +NS
µB. (4.20)

When going from continuous distributions to discrete data points, and
calculating the sample covariance, it is important to normalize all the co-
variances to the estimated number of background events. With the sample
covariance for the full data set given by

covfull(X,Y ) =
1

NS +NB − 1

NS+NB∑
i

(xi − µx|B)(yi − µy|B) (4.21)

the background covariance is

covB(X,Y ) =
NS +NB − 1

NB − 1
covfull(X,Y )− NS

NB
covS(X,Y ). (4.22)
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Figure 4.35: (left) A toy model of a background distribution (blue) and a sig-
nal distribution (red) with known correlation coefficient in the two variables.
(right) The full signal + background distribution, where the correlation of
the background distribution is estimated using the method described above,
and agrees with the true correlation coefficient.

Once the variances for the background-only distributions are calculated
using the same framework, the correlation coefficients between different vari-
ables of the background-only data can be calculated.

This method was tested on a toy model. The blue and red points in
Fig. 4.36 left shows the two distinct distributions, where we seek to deter-
mine the correlation coefficient of the blue distribution. The true correlation
coefficients are shown in the legend. The ρbackground is the value that is be-
ing estimated using the information in the right figure. The full data set
is shown in black and the “contamination” distribution is shown by the
contours, and the relative amount of signal to background is known. The
estimates of ρbackground agrees with the answer given by the toy models.

This method was applied to the Run 3 DM search data as well as the
simulated distribution of signal in the branch A and branch B BDT variable
plane. The signal is simulated using the methods described in Sec. 4.9,
and the distribution is shown in Fig. 4.36 left. We obtain a correlation
coefficient of ρbackground = −0.039 for the LF noise background, as shown in
Fig. 4.36. This correlation coefficient is relatively small, lending confidence
to the requirement that the bifurcated cuts be minimally correlated, and
the bifurcated analysis is performed with the AB box defined as shown in
Fig. 4.36, giving a LF noise leakage estimate of 0.3 ± 0.1 events.
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Figure 4.36: (left) The distribution of simulated signal in the bifurcated
analysis cut plane. 97.5% of the simulated signal is contained in the passage
box, while 0.47% is in the AB̄ box, 1.9% is in the ĀB box, and 0.13%
is in the ĀB̄ box. (right) The distribution of the DM search data in the
bifurcated analysis cut plane. The points in the shaded pink area pass both
bifurcated cuts.

Figure 4.37: Examples of cut loosening when the cuts are uncorrelated (left)
and correlated (right).
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4.7.4 Box Relaxation

While the correlation coefficient result above is an indication that the LF
noise event distribution passing the setup cuts is uncorrelated, it does not
ensure accuracy of the bifurcated analysis results. We must also check cor-
relation of the bifurcated cut parameters directly in the vicinity of the cut
location, and this is done with the box-relaxation method.

If the bifurcated result is accurate for a set of bifurcated cuts, then as
a cut is loosened, new events will enter into the signal box and the new
bifurcated leakage estimate will increase by the number of new events in
the box (to within uncertainties). This procedure is complicated by the fact
that the bifurcated analysis cuts are <100% efficient to signal, as shown in
Fig. 4.36 left. This means that as the box is loosened, we must account
for the fact that an event that is absorbed into the signal box might be a
signal event. Since the bifurcated analysis incorporates the signal efficiency,
the Nleak estimate should not increase if the absorbed event is likely to be
a signal event. We account for the <100% signal efficiency by solving the
non-linear equations of Eq. 4.13, 4.14, 4.15, 4.16, and 4.17.

After solving with a particular value of cut A and B, knowing the signal
passage fractions and the total number of signal events NSIG allows one
to calculate the estimated number of signal events outside the box, given
by (1−S(A)S(B)) × NSIG. This value is shown in Fig. 4.38 center as a
function of different values for the branch B cut. In addition, as the branch
B cut value is loosened the number of events in the AB box increases, and
this increase is shown in Fig. 4.38 left. To check the bifurcated analysis
result, one would expect the number of new events in the AB box minus
the estimated number of new signal events in the AB box (the difference
between points in the left and center plot) to increase at the same rate as
the bifurcated analysis’s Nleak estimate. In the right plot, this rate, which
is called the “direct estimate” because it directly counts the data points,
is overlaid on top of the bifurcated Nleak estimate, showing agreement, to
within uncertainty. We therefore verified that the number of events entering
the box matched the bifurcated analysis’s prediction to within uncertainties,
which is consistent with the cuts being uncorrelated and therefore supporting
the validity of the leakage estimates.

4.8 Fiducial Volume

Because CDMSlite detectors have non-uniform electric fields, the NTL am-
plification (the second term on the right hand side of in Eq. 4.23) and the
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Figure 4.38: (top) The number of events in the AB box, as the value of cut
B is loosened. (middle) The estimated number of signal events outside the
AB box, as the value of cut B is loosened. (bottom) The number of new
events in the AB box minus the number of estimated signal events shown
in red, as well as the bifurcated analysis’s leakage estimate in blue.
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Figure 4.39: (top left) Calculated voltage map for high radius events, show-
ing the difference in electric potential ∆V between the final collection points
of the positive and negative charge carriers, as a function of initial position
of the pair (plotted as radius squared vs. vertical position). Here, the top
of the crystal is biased at 75 V and the bottom is grounded. Charge carriers
in the outermost (radius > 800 mm2) detector annulus can experience less
than the full detector bias voltage (credit: D. Barker [113]). (top right) A
cartoon of the radial vs. energy distribution for a homogenous and monoen-
ergetic background in the CDMSlite detectors. The Pi and PO refer to inner
and outer probabilities, and these variable names are used in the radial cut
efficiency calculation of Sec. 4.9.5 (credit: M. Pepin [82]). (bottom left) Dis-
tribution of the radial parameter ξ vs. energy in the DM search data. An
energy-dependent cut on ξ defines the fiducial volume below 2keVee, while a
stricter constant cut is used above 2keVee. (bottom right) Resolution (1σ)
for ξ (radial parameter) shown as a function of ξ and energy. At lower en-
ergy, the resolution worsens as the increased noise affects the reconstruction
of the radial parameter. (credit: R. Underwood [114])
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reconstructed recoil energy vary with the location at which an event takes
place inside the detector:

Et = Er + Er
e ∆V

ε
. (4.23)

For most events, ∆V in Eq. 4.23 is equal to the full potential difference
between the detector faces, resulting in maximal NTL amplification. How-
ever, as shown in Fig. 4.39, near the detector sidewall ∆V can be smaller.
The voltage drop experienced by an electron-hole pair, and thus the NTL
amplification, can be reduced such that the reconstructed energy of some
high-radius events is significantly lower.

The reduced NTL events are a particularly undesirable background since
their energy is improperly reconstructed. Figure 4.39 top right shows an ex-
ample of this background: for monoenergetic and homogeneously distributed
source of events, for example the K-, L-, and M - shell peaks, the electric
field non-uniformity creates a low energy “tail” at the energies below the
peak, as shown in Fig. 4.39 (top right). We therefore design a parameter
that uses pulse shape information to estimate the radial position of an event
in the detector. Then we place a cut on the this parameter to remove the
reduced Luke gain events from the dataset, as shown in the cartoon in the
top right.

The radial parameter for CDMSlite R3, which we refer to as ξ, is con-
structed using individual channel fit parameters from the two-template Op-
timal Filter Phonon algorithm (2TOF), exploiting the layout of the channel
map and in particular the outer annulus of channel A (see Fig. 4.4). The
parameter was developed by W. Rau [91] for CDMSlite Run 2, and we re-
peated his steps to calculate the parameter for Run 3 [115]. To first order,
the two-template radial parameter (2TRP) takes the difference in the am-
plitude of the fast template for channel A with the fast template of the inner
channel with the largest amplitude. This can be thought of qualitatively as
creating a parameter that is correlated with the peakiness of the pulse on
channel A relative to the other inner channels.

4.8.1 Radial Pulse Simulation

In order to remove reduced NTL events effectively, we must understand
how these events are distributed in the radial estimator ξ vs. energy plane.
In particular, the resolution of ξ degrades at lower energies because the
lower signal-to-noise ratio of the pulses inhibits the ability of the 2TOF to
extract position information. Fig. 4.39 bottom left shows the “flaring” of the
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radial parameter at lower energies, which represents its worse resolution at
lower energy. Below 2keVee we model the ξ vs. energy plane using a pulse
simulation similar to that described in Sec. 4.9.3. Events in the L-shell
(1.21-1.45keVee) which pass all other quality cuts are used as model events,
as they span the full volume. After the L-shell events are fit using the two-
template Optimal Filter (2TOF) algorithm, we take the 2TOF amplitudes
and re-scaled them to a lower energy. These templates are then added to a
noise trace from end-of-run randoms from the same series as the event. For a
constant input radius, the output radius is found to be Gaussian distributed
in ξ, and the width of the Gaussian is shown in Fig. 4.39 bottom right.
We use the radial resolution in the ξ vs. energy plane as one step in the
modeling of the reduced NTL events.

The radial resolution map shown in Fig. 4.39 can be thought of as part
of the detector’s radial response function. For inputs to this response func-
tion, we will estimate the true distribution of reduced NTL events in the ξ
vs. energy plane and convolve this distribution with the radial resolution
response.

4.8.2 Energy Distribution of Reduced NTL events

For the energy distribution of reduced NTL events, we use a smoothed
histogram of the effective potential distribution shown in Fig. 4.39 (top
left). Because the amplification of the signal is proportional to voltage, the
histogram represents the perfect-resolution energy response of the detector
to a homogeneously distributed mono-energetic source of events.

We define the reduced NTL events to include any event whose recoil lo-
cation results in a reconstructed recoil energy that differs from the true recoil
energy by more than the 1σ detector energy resolution. This corresponds
to events that see less than 93.3% of the full bias voltage Vdet. For electron
recoils, the measured event energy is reduced from the nominal expectation
according to

Emeasured = Enominal ×
1 + ∆V

εγ

1 + Vdet
εγ

, (4.24)

where ∆V is the potential difference experienced by charge carriers produced
at the recoil location, and Vdet is the nominal potential difference.

The shape of the voltage distribution is a source of systematic uncer-
tainty for the distribution of reduced NTLs, and to account for this we
perform the same analysis with an alternate voltage distribution containing
more features in the voltage spectrum from the simulation. This predicts
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a slightly higher leakage rate of reduced NTLs given the same radial cut,
and gives us a handle on the systematic uncertainty on the rate of reduced
NTLs we expect to pass our radial cut.

4.8.3 Radial Distribution of Reduced NTL events

The majority of reduced NTL events are measured only slightly lower in
energy than their true energy, because the distribution of ∆V inside the
detector peaks strongly at the nominal voltage. Thus the energy regions just
below the strong K- and L-shell 71Ge-decay peaks provide good samples of
reduced NTL events, with high signal to noise which we used to determine
the distribution in the radial parameter ξ.

We model the radial distribution of reduced NTLs by defining a region
in the radial parameter (ξ ∈ [−2 × 10−5,+4 × 10−5]) outside of which we
observe no reduced NTLs, and selecting events in this region within a small
energy range below the L-shell capture peak (0.7–1.2 keVee). Creating a
cumulative distribution function in ξ for these events gives us an idea of
the distribution of reduced NTLs in ξ. A systematic uncertainty on this
distribution is estimated by removing the upper bound in ξ while narrowing
the energy window, which creates a distribution that predicts slightly more
reduced NTLs passing the same cut.

4.8.4 Optimizing the Radial Cut

Combining the expected energy distributions of reduced NTL events, the
voltage map model, and the resolution model for ξ as a function of energy,
we model the reduced NTL distribution in the energy-ξ plane. We randomly
sample from these distributions and thus produce a prediction for the 2D
probability distribution of the data in these variables, which is shown in
Fig. 4.40. A cut can then be set on this distribution of events to allow a
certain shape and magnitude of leakage past the cut.

This specific choice of event leakage was chosen after a detailed sensitiv-
ity study. While choosing a looser cut results in a better signal efficiency
(improving the analysis’s sensitivity), a looser cut also results in a higher
reduced NTL background leakage past the cuts (worsening the analysis’s
sensitivity). Monte Carlo simulations indicated that minimal extra sensi-
tivity was gained by choosing a looser cut [116]. Therefore, in order to
eliminate the need to include a reduced NTL model into the profile likeli-
hood background model, we chose a particularly restrictive cut.

We set a cut on ξ as a function of energy that results in 0.13± 0.1stat ±
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Figure 4.40: The Monte Carlo distribution of reduced NTL events in the
2T radius (i.e. ξ) vs. energy plane. The colored points are those that
would pass a cut such that (after normalizing the Monte Carlo to the Run 3
exposure) only 1/8th of an event would pass into the signal region. (credit:
R. Underwood)

0.44sys reduced NTLs passing the cut. The systematic error is estimated
from Monte Carlo simulations with the alternate radial and voltage models
(with the radial distribution of reduced NTLs being the larger contributor).
The cut boundary was chosen such that the expected distribution of reduced
NTLs passing the cut is uniform in energy between 0.07 and 2 keVee. The
radial parameter cut imposes an analysis threshold of 70 eVee, which is
determined by the lowest well-determined bound of the radial resolution
model.

4.9 Livetime and Signal Efficiency

While the cuts described in Sec. 4.5 are designed to remove background
events, they remove some good events as well. When looking for a DM
signal in the data, we must account for the fact that the cuts make the
analysis less than 100% efficient to the signal. Because signal-background
discrimination becomes increasingly difficult at lower energies, we calculate
the efficiency as a function of energy, as described in Sec. 4.9.3.

In addition to the cuts removing good events that could potentially be
from DM particle interactions, the hardware trigger of the experiment also
only reads out events with a sufficiently high signal-to-noise ratio. Therefore,
recoils in the detector that are below a certain energy range are never read
out as events, and we account for the reduced signal rate at low energy by
calculating the trigger efficiency as a function of energy. This is described
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Figure 4.41: Livetime contribution of each series block to the R3 exposure,
with the livetime removed by the cuts listed in Sec. 4.9.1 shown at the top
of each bar of live days.

in Sec. 4.9.2.
We also consider the amount of time that the detector was “live” and

able to record an event, as described in Sec. 4.9.1. The “livetime” is one com-
ponent in the calculation of the magnitude with which a DM signal would
appear in the detector. Ignoring annual modulation effects, the number of
events observed from a DM signal increases linearly with the livetime.

4.9.1 Livetime

For the “livetime” of the dataset we consider the raw amount of time over
which the dataset was acquired, and then account for data acquisition inef-
ficiencies as well as removal of certain periods of time from the DM search
dataset, which reduces the raw livetime.

When the data acquisition system records an event, it also records the
amount of time that it was idle and waiting for that event (i.e. that event’s
livetime). This amount of time will be slightly less than the time between
the event of interest and the previous event because the data acquisition
system requires a small amount of time to read out an event that amounts
to some “deadtime.” Simply summing the livetime quantity for each event
gives the cumulative livetime of the dataset. Without any cuts applied, the
low background DM search Run 3 dataset lasted 66.9 days.

The cuts described in Sec. 4.5 remove periods of time when the detector
was behaving sub-optimally. These cuts are the high voltage, NuMI beam,
prepulse baseline, charge chi squared, bad series, bad GPS time, bad trigger
rate, and the “T2Z1 triggered” cuts. With all R3 LT cuts applied, the total
Run 3 livetime is 60.9 days.
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We compute the livetime removed for these cuts for each of the 17 series
blocks, and as shown in Fig. 4.41 the cuts retain most of the livetime (though
it should be noted that some of the bad series are not assigned to a series
block, and so visually this plot underestimates the livetime removed by the
cuts). After livetime cuts have been applied, the Run 3 total livetime is 60.9
days (or 36.4 ± 0.3 kg-days of exposure for the T2Z1 mass of 0.597 ± 0.005
kg [117]).

4.9.2 Trigger Efficiency

The central idea of the trigger efficiency is that the detector’s DAQ hardware
only issues a trigger and reads out events whose energy deposition is large
enough to create a significant increase of the signal above the baseline noise.
Therefore, while very low energy events buried in the baseline noise will
never cause a trigger and high energy events will always cause a trigger,
there is a middle ground of events that are only slightly distinguishable above
baseline noise and that the hardware trigger has a non-zero and non-unity
efficiency of identifying. Trigger efficiency studies calculate this efficiency
and parametrize it as a function of event energy.

The trigger efficiency is typically calculated using 252Cf calibration data,
as opposed to low background data, because the method for calculating
the trigger efficiency improves with increased statistics. For Run 3, the
trigger efficiency was calculated using the three-day 252Cf calibration taken
at the beginning of Run 3. The vast majority of the events that occur
on the detector of interest (in this case T2Z1) were read out because they
caused a trigger on T2Z1. Therefore measuring the trigger efficiency on
T2Z1 with events that are known a priori to have caused a trigger is biased—
the measurement will indicate 100% trigger efficiency. Instead, the method
employed to measure the T2Z1 efficiency operates on the idea that events
that have caused a trigger on the other active detectors (in this case T2Z2
and T2Z3) are an unbiased sample of events that can be used to measure
the T2Z1 trigger efficiency. This is because for good events, the trigger of
the other detectors should not depend on the trigger of T2Z1. Of those
events that caused a trigger on the other detectors, we calculate, in energy
bins of 0.2 keVt, the fraction of events that caused a trigger on T2Z1. That
fraction (labeled “efficiency” on the y axis) is plotted as a function of energy
in Fig. 4.42.

To select the events for the trigger efficiency calculation, we apply re-
strictive cuts [118] to ensure that the measurement is being made with good
events that were not due to instrumental backgrounds (e.g. low frequency
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Figure 4.42: (top) Trigger calculation showing the number of events that
triggered both T2Z1 and the other detectors (numerator counts) as well as
the number of events that triggered just the other detectors (denominator
counts). (bottom) Binned efficiency of the trigger as a function of energy.
Error bars are binomial statistical uncertainties.

noise or glitch triggers). The high rate 252Cf calibration data with which the
trigger efficiency is measured also helps to ensure that instrumental noise
events make up a small fraction of the events being used to measure the
efficiency.

The trigger efficiency was parametrized as a modified error function given

by Efficiency(E) = 0.5
(

1 + erf
(
E−µ√

2σ

))
where µ corresponds to the 50%

efficiency point and σ determines the width of the curve.
Figure 4.42 shows that there is an energy range of interest between 0.7

and 1.5 keVt in which some events have issued a trigger on T2Z1 (i.e. passing
events) and some events have not issued a trigger on T2Z1 (i.e. failing
events). Given the error function trigger efficiency model, at an energy E,
the probability of an event passing is 0.5(1 + erf(E−µ√

2σ
)), and the probability

of an event failing is 0.5(1− erf(E−µ√
2σ

)). The data consists of energies of the

passing events (Epass) and failing events (Efail), and so up to a normalization
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Figure 4.43: (left) Corner plot for trigger efficiency fit of µ and σ. (right)
Best-fit error function with 100 MC sample curves from the µ vs. σ posterior.
These samples serve as visualizations of the model uncertainties.

factor, the log likelihood of the data is:

lnL =
N∑
i=1

ln
[
0.5

(
1 + erf

(
Epass,i − µ√

2σ

))]
+

M∑
j=1

ln
[
0.5

(
1− erf

(
Efail,j − µ√

2σ

))]
,

(4.25)

where N is the number passing events, and M is the number of failing events.
Maximizing the likelihood gives best-fit parameters: µ=1.29 keVt, σ=0.20 keVt.

To evaluate posteriors, uniform priors were used on µ and σ, and the emcee
[119] MCMC package was used to sample the likelihood. The covariance be-
tween model parameters, as well as the best fit model, is shown in Fig. 4.43.

4.9.3 Signal Simulation

The efficiencies of the glitch, phonon χ2, square, and BDT-based LF noise
cut were computed using a simulation of good events, which we refer to
as a “pulse simulation.” A cartoon of the simulation procedure is shown
in Fig. 4.44, where we use a noiseless pulse template for the shape of the
simulated pulse, and we use a random event to represent the noise for the
simulated pulse.

The CDMS BatFaker software package, written by B. Loer as part of the
salting effort, as well as MATLAB tools, are used to create the fake events in
a format that can be processed through the CDMS reconstruction software.
BatFaker and the MATLAB tools work by replacing events in an existing
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Figure 4.44: A cartoon depicting the pulse simulation procedure (credit A.
Anderson: [120]).

CDMS raw data file with fake data that can be specified by the user. In
particular, one creates a fake pulse by combining (1) a noise trace from a
random event in the real data, (2) a slow template scaled to a user-defined
energy, and (3) a fast template scaled to a user-defined amplitude.

For calculating cut efficiency as a function of energy, fake pulses are
simulated that are uniformly distributed in energy. To first order, this is
accomplished by uniformly varying the amplitude of the noiseless template
shown in Fig. 4.44 while not scaling the noise traces. To second order, the
pulse shape varies as a function of energy, which we include in the simulation.
The majority of energy-dependent pulse shape variations, as well as the
peaky and non-peaky position-dependent features that exist in individual
channels, are averaged out when the 4 channels are summed to make the
total phonon pulse; however, there are still pulse shape deviations from the
standard optimal filter template. We seek to simulate these variations in
our fake data using a 2-template (1 slow, 1 fast) approach.

To capture the variations in peakiness of the pulses as a function of en-
ergy, we use the ratio of fast to slow amplitude fits of good events, which is
shown in Fig. 4.45 left. We also examine the raw L-shell traces at the ex-
trema of the fast/slow amplitude ratio distribution in Fig. 4.45 right. These
raw traces confirm that the L-shell events at the extreme of the ratio distri-
bution are still good events, and the full range of the fast/slow ratio can be
sampled to create fake pulses that resemble true signal. The slow amplitudes
were uniformly sampled such that the pulse energies would be uniformly dis-
tributed between 0 and 60keVt. To determine the relative amplitude of the
fast and slow template to use for this simulated data, we use the distribution
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Figure 4.45: (left)The fast/slow amplitude ratio, as a function of energy, for
the two-template fit optimal filter fit. (center) (right) Two L-shell pulses
showing the variation in pulse peakiness where the center pulse has is the
peakiest of the L-shell events (fast/slow ratio = 0.4) and the right pulse is
the least peaky of the L-shell events (fast/slow ratio= −0.6).

of the fast/slow template ratio observed in the low background data from
0–30keVt, in energy bins of 2keVt. The fast amplitudes were sampled from
the fast/slow amplitude ratio distributions.

4.9.4 Quality Cut Efficiency

After creating the fake event datasets we process them through the event
reconstruction software, and then examine the location of our simulated
good events in the parameter spaces in which we have placed cuts. An
example of the simulated events in the ∆χ2

glitch vs. energy plane is shown
in Fig. 4.46 left, where the slope of the parabolic distribution matches the
trends observed in the real data. One complication is that the glitch, phonon
χ2, and square cuts were tuned on 17 different series blocks of data as
described in Sec. 4.6, while the BDT-based cut was tuned separately for
R3a and R3b as described in Sec. 4.7. Accordingly, the efficiencies of these
cuts were calculated for the different series block by simulating the fake
pulses with randoms selected from that series block.

The efficiency of any given cut is simply the passage fraction for a specific
energy bin, the ratio of passing events to all events, where “all events”
constitutes all the events that pass the livetime cuts.

Because many of the DQ cuts are based on the pulse shape and optimal
filter fitting results, some correlation is expected between the cuts. For
example, one would hope that clear glitch events would also fail the phonon
χ2 cut and potentially the square pulse cut. The correlation between the
different cuts is accounted for by simply computing the logical AND of all
the cuts. The final efficiency for a group of data quality (DQ) cuts, for each
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Figure 4.46: (left) The distribution of simulated signal events in the ∆χ2
glitch

vs energy plane with the cut boundary overlaid. (center) The efficiency of
the ∆χ2

glitch cut calculated with data the simulated signal data. (right) The
efficiency of all DQ cuts calculated using Eq. 4.26. All figures use series
block 7 simulated data and cut boundaries.

energy bin, is then

Efficiency = sum
[
cutsLT&cutsDQ

]/
sum

[
cutsLT

]
, (4.26)

where the data quality cuts are collectively labeled as cutsDQ and the live-
time cuts are collectively labeled as cutsLT. The efficiency of the glitch cut
alone and for all DQ cuts, for series block 7, are shown in Fig. 4.46 center
and left respectively.

The error bar for each energy bin is the 1σ width of a binomial distri-
bution with the central value (probability of passing) p, the number of total
events for each bin is N , and the number of events passing the cut in that
energy bin is given by k. This distribution is given by:

B (k;N, p) =

(
N
k

)
pk(1− p)N−k =

N !

k!(N − k)!
pk(1− p)N−k. (4.27)

Using the binomial distribution to estimate the uncertainty breaks down
when p = 1 and p = 0, where the variance of the binomial distribution
vanishes, unrealistically indicating 100% certainty of the efficiency measure-
ment. Alternatives for computing sensible uncertainty bands for these cases
have been proposed that employ Bayes’ theorem. Using a uniform prior on
p and a binomial distribution as the likelihood, one can analytically solve
for the posterior on p:

P (p; k,N) = (N + 1)B (k;N, p) . (4.28)

as derived in Ref. [121]. Equation 4.28 does not result in zero variance when
k = 0 and k = N , and so we use this result for the two edge cases.
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4.9.5 Fiducial Volume Efficiency

The final fiducial volume efficiency is the fraction of events that are recon-
structed at the correct energy that pass the radial cut. In a method devel-
oped by W.Rau, R. Underwood, and K. Page [122], the radial cut efficiency
is split up into two parts. The first part, called the “energy efficiency,”
is the fraction of events reconstructed at the correct energy. The second
part, called the “peak efficiency,” is the fraction of events at a given energy
that pass the radial cut. The energy efficiency and peak efficiency are given
by the first term and second term, respectively, on the right-hand-side of
Eq. 4.29:

Efficiency =
Pi

R+ Po + Pi
=

Po + Pi
R+ Po + Pi

× Pi
Po + Pi

. (4.29)

The notation of Equation 4.29 is defined in Fig. 4.39 top right.
The “energy efficiency” was measured by finding the ratios of K-, M -

, and L- shells events with misreconstructed energy to those events with
correctly reconstructed energy. The number of misreconstructed K-, M -,
and L- shell events was estimated using a time-dependent fit that exploited
the fact that the rate of the K-, M -, and L- shell backgrounds decay with a
11.43 day half-life, the half-life of 71Ge, while other dominant backgrounds
decay over significantly longer timescales or not at all. Details of the energy
efficiency calculation can be found in Ref. [82].

The “peak efficiency” can be measured with techniques similar to those
used to construct the reduced NTL model in Sec. 4.8. We use a Monte Carlo
simulation based on the radial resolution model to simulate the radial pa-
rameter distribution for events having the full NTL amplification. Because
the DM signal will be uniformly distributed in the detector, we model the
ξ distribution for uniformly distributed, full NTL amplification events with
reconstructed energies in the L-shell line. We statistically subtract the small
contribution of non-71Ge backgrounds from this distribution and deconvolve
the radial-parameter resolution at the L-shell line energy (1.3 keVee). The
deconvolved distribution is expected to be the underlying “true” distribution
of ξ for events at the L-shell energy. We then use the resolution model of
ξ, described in Sec. 4.8, to scale this distribution according to energies from
0.07 to 2keVee, thereby creating energy-dependent probability distributions
for ξ. We then apply the radial cut to these simulated distributions, and by
doing so obtain the efficiency of the fiducial volume cut for events with full
NTL amplification.
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4.9.6 Combining and Parametrizing the Efficiency

The trigger efficiency, quality cut efficiency, and the radial cut efficiency are
combined by multiplying the mean value of the efficiencies together and using
Monte Carlo to propagate the uncertainty between the different sources.

For the quality cut efficiency, systematic differences between the effi-
ciencies from the different series blocks require propagating the uncertainty
between series blocks to obtain a combined total efficiency curve for all
quality cuts and all series blocks. To generate a Monte Carlo (MC) sam-
ple efficiency curve, for each energy bin a random number is drawn from a
binomial distribution using the central value (probability of passing) p and
number of total events N for each bin. Visually, this means sampling the
distribution described by the error bars in Fig. 4.46 right independently for
each energy bin. In order to properly weight the efficiency contribution from
each series block, the number of MC efficiency curves created for each series
blocks is linearly proportional to that series’ livetime. Many MC curves are
generated and multiplied together to determine the mean efficiency values
as well as the 1σ efficiency uncertainty.

For the trigger efficiency, we sample the 2D posterior for the trigger effi-
ciency model µ and σ. The posterior is shown in Fig. 4.43 left while the MC
sampled trigger efficiency curves are shown in Fig. 4.43 right. The trigger ef-
ficiency curves are incorporated into the total efficiency by multiplying them
by the quality cut MC efficiency curves, although it is clear that the trigger
efficiency is a subdominant contribution. That is, the quality cut efficiency
falls to a low value at 1.75keVt where the trigger has high efficiency.

The total efficiency curve is parametrized with an error function given
by

Efficiency(E) = A

(
1 + erf

(
E − µ√

2σ

))
(4.30)

and the results of the fit of that model are shown in Fig. 4.47.
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Figure 4.47: The signal efficiency with successive application of the trigger
efficiency, quality cuts efficiency, and fiducial volume cut efficiency. The
final data is included with statistical and systematic 1σ uncertainty. Fitting
the efficiency model to these data gives the final (blue) efficiency curve and
the corresponding ± 1σ uncertainty band.
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Chapter 5

Profile Likelihood Dark
Matter Search with
CDMSlite Run 3

The final chapter of this thesis focuses on the aspects of the Run 3 analysis
that deviated sharply from past CDMSlite analyses and allowed us to employ
more powerful statistical methods to look for a DM signal in the Run 3
dataset. We start the chapter by discussing background models for all of
the known backgrounds in the CDMSlite Run 3 region of interest (ROI). We
also develop a signal model, and then characterize the dominant systematic
uncertainties of the analysis. These systematic uncertainties in turn allow
the signal and background models to change shape (within a systematic
uncertainty range) in the fit. Then, after unblinding (or “unsalting”) the
data and observing no DM-like component in the data, we employ the profile
likelihood framework that uses a likelihood ratio statistic to set a limit on a
DM signal in a way that naturally incorporates systematic uncertainties into
the limit. Our approach of accounting for known backgrounds has significant
benefits over the optimum interval approach (discussed in Sec. 2.5.3) of the
previous CDMSlite analysis. Namely, the background models and profile
likelihood method have the benefits of (1) improving the limit over the OI,
and (2) moving CDMSlite from an exclusion-only analysis into one with
discovery potential.

5.1 Background Models

The SuperCDMS cryostat was surrounded by layers of shielding that blocked
almost all external radiation, such as γ-rays and neutrons from the cavern
walls, and as a result the dominant source of background particles in the
detector came from radioactivity of the shielding, other apparatus materials,
and the detectors themselves. The profile likelihood analysis, discussed in
more detail in Sec. 5.2, requires probability distribution functions (PDFs)

149



5.1. Background Models

for every background component that will contribute events to the DM-
search data. In addition to the PDF that defines the spectral shape of
the background, if the number of events from a background component is
known, the expected number of events contributing from that background
(i.e. the normalization) can be included in the profile likelihood fit.

The primary backgrounds modeled for this analysis are cosmogenic ac-
tivation of the crystal, neutron activation from 252Cf calibration, Compton
scattering from primordial isotopes in the apparatus materials, and 210Pb
contamination on the surfaces of the detector and its copper housing. We
use Monte Carlo simulations, as well as data-driven fits, to model these back-
grounds. Table 5.1 lists the considered background components and whether
or not the information about the normalization was included in the likeli-
hood fit. These background models were developed by D. Barker, and below
we briefly describe each background for completeness. We direct the reader
to D. Barker’s thesis [123] for a more thorough discussion of the background
model development. In particular, D. Barker discusses the applicability of
the Geant4 simulation to package to the low energies (50 eV–2 keV) of in-
terest to this analysis through validation of the low-energy electromagnetic
physics lists in Geant4.

5.1.1 Energy Resolution Model

We require a good model of the energy resolution in order to calculate the ex-
pected energy spectra for background models. We model the total CDMSlite
energy resolution as in Ref. [82]:

σT(Er,ee) =
√
σ2

E + σ2
F(Er,ee) + σ2

PD(Er,ee) (5.1)

=
√
σ2

E +BEr,ee + (AEr,ee)2. (5.2)

The energy-independent term σE describes the baseline resolution and ac-
counts for electronics noise and any drift in the operating conditions. The
Fano term σF accounts for fluctuations in the number of generated charges [125]
and is proportional to

√
Er,ee. The σPD term reflects the position depen-

dence of the event within the detector due to the electric field, TES response,
etc., and is proportional to Er,ee. Separating out the energy dependence we
end up with the three model parameters σE, B, and A.

We use several measurements to determine the resolution model for
Run 3. We use randomly triggered events to determine the zero-energy noise
distribution. Additionally we use the widths of the K-, L-, and M -shell 71Ge
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Component Normalization Constrained
vs. Free, and Other Comments

Compton Free
Tritium (3H) Free
71Ge Free
68Ga Free
65Zn Free
65Fe Free
Surface Germanium Constrained
Surface Housing Constrained
Surface Top Lid Constrained

neutrons Not included
(contributes <1 event [124])

low rate isotopes (60Co,54Mn,49Vn) Not included
(contributes <1 event)

Instrumental Backgrounds Not included
(contributes <1 event (Sec. 4.7))

Table 5.1: Background components considered in the likelihood fit
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Peak Energy Resolution
µ [keVee ] σ [eVee ]

K shell 10.35± 0.002 108± 2
L shell 1.33± 0.003 36.3± 2.0
M shell 0.162± 0.002 13.9± 2.0

Baseline
Period 1 0.0 9.87± 0.04
Period 2 0.0 12.7± 0.04

Table 5.2: Reconstructed energies and resolutions of the 71Ge decay peaks
and the baseline noise in CDMSlite Run 3.

σE [eVee ] B [eVee ] A (×103)

Period 1 9.87± 0.04 0.87± 0.12 4.94± 1.27
Period 2 12.7± 0.04 0.80± 0.12 5.49± 1.13

Table 5.3: Best-fit energy resolution parameters of the model in Eq. 5.2 for
Period 1 and Period 2.

activation peaks to determine the energy dependence of the resolution. We
fit these peaks with a combination of a Gaussian and linear background
model in order to determine the width of the peaks.

Table 5.2 gives the peak position µ and resolution σ of each 71Ge peak,
as given by the Gaussian fits to the peaks shown in Fig. 5.1. Because
the zero-energy baseline resolution varies with the applied bias voltage and
with environmental conditions, all of which changed between Period 1 and
Period 2, we calculate separate livetime-weighted average resolutions for
each period. These are given in Table 5.2. The measured widths of the K-,
L-, and M -shell peaks are consistent between Period 1 and Period 2, and so
common values are used for both periods.

We apply this energy-dependent resolution model when calculating the
expected energy distribution for the background and DM signal compo-
nents. We propagate uncertainties in the model parameters as systematic
uncertainties in the profile likelihood fit of Sec. 5.2.

5.1.2 Cosmogenic Activation

Cosmic rays that strike the detectors (during fabrication, storage, and trans-
portation above ground) activate the crystals. In germanium detectors, cos-
mogenically produced tritium is a significant background, with contributions
from other isotopes that decay primarily either by β-decay or electron cap-
ture (EC). The isotopes that undergo EC give discrete peaks in the detectors
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Figure 5.1: Fits of a Gaussian + linear background to the energy spectra
of zero-energy (baseline) events and events from each 71Ge activation peak.
The widths of the Gaussians are the energy resolution σ. Copied from [126]
with permission. (credit: D. Barker)

below ∼10 keV and were observed in the CDMSlite Run 2 spectrum [127].
We describe analytic models for the tritium beta-decay spectrum and the
EC lines.

Tritium

Non-relativistic β-decay theory describes the tritium’s decay spectrum be-
cause its endpoint, or Q-value, satisfies the relationship Q � mec

2, where
me is the electron mass. The distribution of the electron’s kinetic energy
EKE is described by

ftritium(EKE) =C
√
E2

KE + 2EKEmec2 (Q− EKE)2

×
(
EKE +mec

2
)
F (Z,EKE) ,

(5.3)

where C is a normalization constant and F (Z,EKE) is the Fermi func-
tion [128]. The non-relativistic approximation for the Fermi function is
given by

F (Z,EKE) =
2πη

1− e−2πη
, with η =

αZ(EKE +mec
2)

pc
. (5.4)
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Shell: K L1 M1

µ Λ µ Λ µ Λ
68Ga 9.66 1.0 1.20 0.1107 0.140 0.0183
65Zn 8.98 1.0 1.10 0.1168 0.122 0.0192
55Fe 6.54 1.0 0.77 0.1111 0.082 0.0178

Table 5.4: Cosmogenic isotopes that decay via electron capture and are
present in the measured CDMSlite spectrum. The shell energies µ, given in
keV, are from Ref. [130]. The amplitudes Λ, from Ref. [131], are normalized
with respect to the K shell.

Here Z is the atomic number of the daughter nucleus, α is the fine structure
constant, and p is the electron’s momentum [129]. The analytical description
given by Eqs. 5.3 and 5.4 describes the tritium background used for the
likelihood analysis.

Electron Capture Peaks

The cosmogenic isotopes that decay via EC and are present in the mea-
sured CDMSlite spectrum are listed in Table 5.4 with their shell energies
and relative amplitudes, normalized to the K shell. The observed energy
distribution is a Gaussian peak at the energy of the respective shell with a
width given by the detector’s energy resolution.

In our background model, the amplitude ratio between the K-, L- and
M -shell peaks is assumed to be as given in Table 5.4. The contribution of
each EC isotope to the spectrum is given by an equation of the type

fECpeaks(E) =
∑

i=K,L,M

Λi

σi
√

2π
exp

[
−1

2

(
E − µi
σi

)2
]
, (5.5)

where Λi are the amplitudes of the respective shells, µi are the shell energies,
and σi are the energy resolutions at the respective energies.

By modeling the EC peaks with Eq. 5.5, the number of events in the
K shell is the only free parameter in the likelihood fit, with the other peak
amplitudes determined from the branching ratios.

5.1.3 Electron Capture of 71Ge

The 71Ge EC peaks, which are used to calibrate the energy scale and have
been previously discussed in Sec. 2.5, are also a source of background. There-
fore this component is included in the background model. They are modeled
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using the same functional form as the cosmogenic EC peaks (Eq. 5.5) with
the one exception that, due to the large overall number of events, the L2

peak is not negligible and is thus included in the fit. This component, omit-
ted from Table 2.5, has an energy of 1.14 keV and relative amplitude of
0.0011.

5.1.4 Compton Scattering

The dominant contributors to the Compton background are the radiogenic
photons from trace amounts of contamination in the experimental materials.
These originate from the shield materials (polyethylene and lead) as well as
the cryostat and towers (copper). Typically the energy distribution of the
recoiling electrons is assumed to be uniform, or “flat,” however for the low
energies of CDMSlite, atomic binding energy effects create a measurable
deviation from a flat Compton energy spectrum. In particular, in both
germanium and silicon “Compton steps,” which are step-like features created
in the energy spectrum because the detector collects at least the binding
energy of any freed electron, have been observed. The Monash Compton
Model [132] accounts for the atomic binding energy in the calculation of the
energy of the scattered incident photon and the detector’s recoiling electron.

For example, the electrons in the K shell of germanium have a binding
energy of 11.1 keV. This energy is deposited in the detector due to the
reorganization of the electron shells, along with any additional energy that
is given to the freed electron by the incident gamma. Thus, an electron
scattered from the K shell can never deposit less than 11.1 keV in the
detector, and likewise for electrons in the other atomic shells.

While the expected location of the steps agrees with measurements by
other experiments, there is more uncertainty surrounding the size of the
steps. Näıvely we would expect the number of electrons in each shell to
determine the relative size of the steps; however details of the electron wave
functions can also affect the step size. The Compton steps have been directly
observed in silicon detectors [133]. In germanium, only the K-shell step has
been measured directly, and so other methods must be used to estimate the
lower energy steps [134].

To estimate the shape of this particular background, we carried out a
Geant4 simulation [135–137] of 238U decays. We fit a model consisting of
a sum of error functions,

fC(E) = Λ0 +
∑

i=K,L,
M,N

0.5Λi

(
1 + erf

[
E − µi√

2σi

])
, (5.6)
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ΛK ΛL ΛM ΛN
5.7± 0.3 15.2± 0.5 9.43± 1.40 18.7± 1.3

Table 5.5: Compton model parameters for CDMSlite, normalized over the
energy range 0–20 keV. All values have been multiplied by a factor of 103

and are in units of keV−1.

to the the simulated events that scatter once in the CDMSlite detector.
The location of each step is given by µi, while σi is the energy resolution at
that energy given by the energy resolution model of Sec. 5.1.1. The Λi, the
amplitudes of the error functions, are the relative step sizes, and are chosen
so that Eq. 5.6 is normalized to one over the energy range 0–20 keV. The
constant term Λ0 in Eq. 5.6 has a value of 0.005 keV−1 and accounts for a
flat background required to fit the simulated spectrum.

Table 5.5 gives the final parameters of our Compton model, extracted
from a fit of Eq. 5.6 to the Geant4 simulation.

5.1.5 Surface Backgrounds

Surface events are primarily due to the decay of 210Pb, which is a long-lived
daughter of 222Rn. Radon exposure can cause 210Pb to become implanted
into the surfaces of the detectors and their surrounding copper housings.
Radiation from the 210Pb decay chain consists primarily of betas, Auger
electrons, 206Pb ions, and alphas which have a small mean free path in Ge
and will deposit the majority of their energy within a few millimeters of the
detector’s surface. To understand this background and build a model of its
expected distribution in energy, we use a Geant4 simulation and a detector
response function. We normalize the predicted rate of surface backgrounds
using a study of alphas in SuperCDMS iZIP data. Again, this effort was
led by D. Barker, and we direct the reader to D. Barker’s thesis [123] for a
detailed description of this work.

Simulation of 210Pb Contamination

In Geant4, we use the Screened Nuclear Recoil physics list [138] to model
the implantation of 210Pb into the material surfaces along with any recoil of
nuclei by subsequent decays to the stable isotope 206Pb. We consider three
locations from where surface events may originate: the copper directly above
the detector (“top lid”, TL), the cylindrical housing (H) and the surface of
the germanium crystal itself (Ge).

156
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We simulated energy deposition from the decays of 210Pb, 210Bi, and
210Po for the three locations. We then apply a detector response function
to each simulated decay. The detector response model uses the voltage map
of Fig. 4.39 and the resolution model of Eq. 5.2 to approximate the total
phonon energy measured in the detector. The response model outputs the
expected surface background spectra for this analysis, used in the likelihood
fit. The spectral shapes of the three surface backgrounds are shown in
Fig. 5.10.

Normalization

We normalize the surface background rate with an independent measure-
ment of the alpha decay events in the CDMSlite detector, using a data
set with a livetime of ∼380 days taken with the detector operated in iZIP
mode. Because this iZIP-mode data set provides more detailed informa-
tion on event positions, the observed rates could be attributed to surface
event sources originating from parents on the top lid, housing, and detector
surface. The detector surface rate is deduced from the surface facing the
neighboring detector. This rate is then subtracted from the event rate mea-
sured on the side wall and the surface facing the top lid to determine the
rate from the other two locations (H and TL). The single-scatter events that
pass the voltage cut in the simulation are then scaled to the Run 3 livetime
to get the expected number of surface events. The germanium, housing, and
top lid are estimated to respectively contribute 3.4, 6.5, and 17 events from
0–2 keVee after signal efficiency cuts have been applied.

Systematic Uncertainties

There are two main sources of systematic uncertainty on the energy spec-
tra for surface events: uncertainties in the voltage map that determines the
voltage ∆V for each event, and the location of the fiducial volume cut. The
map in Fig. 4.39 assumes no additional detectors in the tower. Including
the detector beneath the CDMSlite detector results in a difference of 0.5 V
and 1 V for the top and bottom faces respectively, which we incorporate as a
systematic uncertainty. Additionally, we model uncertainties in the fiducial
volume cut (using the voltage cut Vcut as a proxy for the radial parame-
ter cut) by varying the voltage cut from roughly Vcut − 2 V to Vcut + 1 V.
Figure 5.2 shows the spectra and the 1σ uncertainty from the voltage map
and voltage cut systematics. Section 5.2.1 discusses how these systematic
uncertainties are incorporated into the likelihood.
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Figure 5.2: The spectra (normalized to event density) of surface events
expected from the three surface background locations (left: germanium;
center: housing; right: top lid). For each location, the solid curve represents
the mean of the expected event distribution (ρ0). The shaded band shows
the 1σ uncertainty, where the top and bottom edges of the bands correspond
to ρ+ and ρ− in Eq. 5.7, respectively. Copied from [126] with permission.
(credit: D. Barker)

5.2 Likelihood and Limit Setting

The understanding of backgrounds in the CDMSlite energy range (0–25keVee)
was greatly improved in the analysis of the CDMSlite R2 dataset, and with
this improved understanding, background modeling likelihood approaches
were used for the CDMSlite Run 3 WIMP-search analysis. This likelihood
analysis of Run 3 data improves upon the Run 2 analysis for two main
reasons. First, it provides improved sensitivity over the optimum interval
method. Second, the optimum interval method only allows one to exclude
a signal whereas in likelihood analyses the signal is included in a fit and
therefore a likelihood analysis has discovery potential. For the R3 analysis
we employ the profile likelihood ratio (PLR) method [139], which has the
additional benefit of naturally incorporating systematic uncertainties into
signal and background models and reflecting those systematic uncertainties
in the sensitivity.

5.2.1 Components Needed for the Likelihood

The two most fundamental components of the likelihood are the data and
the model. The data are the energy (in keVee) of the unblinded events that
pass all quality cuts. The time values of the events are also used to determine
if the event is from Run 3a or Run 3b (since the resolution are different for
R3a and R3b as described in Sec. 5.1.1), so that events from R3a and R3b
will be treated separately in the likelihood. For testing the likelihood prior
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to unblinding, we also created fake datasets (i.e. pseudo-datasets) that are
representative of our expectations for the final dataset. Because this analysis
is focused on WIMPs between 1 and 10GeV/c2, and the energy spectrum
of a WIMP signal in this mass range above 2keVee is small relative to the
signal below 2keVee, only data in the 0–2keVee range is considered for the
final likelihood fit. The higher energy 5–25keVee region, where WIMPs of
1–10GeV/c2 contribute negligibly to the event rate, is used to generate a
background rate estimation which is used in the sensitivity estimate.

The model’s fit parameters allow both the magnitude and the shape of
these distributions to vary, though for the surface backgrounds the normal-
ization will be constrained within a range determined in Sec. 5.1.5. There
are a total of 20 model parameters that we fit for in the likelihood: the
number of background events from (1) Compton scatters; beta or EC de-
cays from (2) 3H, (3) Ge, (4) Ga,(5) Zn, (6) Fe; (7-9) morphing parameters
that determine the number of events from the surface backgrounds as well
as the the surface background shapes (see discussion below for morphing
parameter details); (10-12) parameters describing the signal efficiency; (13-
18) parameters describing the detector resolution; (19) the Lindhard k value
(see Sec. 2.1.2 for additional details); (20) the WIMP cross section. The first
6 parameters are allowed to float freely in the fit. Parameters 7–19 are fit
including constraint terms from prior information, and the nature of these
constraints is described below. Parameter 20—the WIMP cross section—
will sometimes be freely floating and sometimes be clamped to a specific
cross section as is customary in the PLR method, and will be described
below.

Of the 20 parameters listed above, 13 account for the systematic un-
certainties. Explicitly these are the 3 parameters describing the signal effi-
ciency, 6 parameters describing the resolution, 1 parameter (the Lindhard
k parameter) describing the yield function, and the 3 morphing parameters
that take into account the systematics on the shape and normalization of
the surface background.

In addition to the 20 parameters, the likelihood function also contains
background distributions and a signal distribution for a given WIMP mass.
These distributions are plotted in Fig. 5.3. Figure 5.3 left shows the signal
distribution for 3 different values of the Lindhard k (the Lindhard model is
described in Sec. 2.5). Figure 5.3 right shows background distributions with
no efficiency corrections applied, in units of differential rate (events/kg/day,
or DRU), of the 9 different background components used in the likelihood fit.
The rates are the central value background rates extrapolated to 0–2keVee

from a fit to the backgrounds in the 5–25keVee range.
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Figure 5.3: (left) The distribution expected (with detector efficiency ap-
plied) from a 7 GeV/c2 DM particle for different values of the Lindhard k
parameter. (right) Background distributions at the magnitude expected in
the Run 3 data (estimated prior to unblinding).

Surface Background Morphing Parameters

The surface background components (Surface Germanium, Surface Hous-
ing, and Surface Top Lid) deserve additional discussion because they are
treated differently than the non-surface backgrounds in two ways. First, the
alpha-count study described in Sec. 5.1.5 provides prior information on the
rate of this background; we constrain the rate of the surface backgrounds
with a Gaussian prior according to the alpha rates study. Second, as shown
in Fig. 5.4, there is significantly larger uncertainty on the spectral shape of
the surface backgrounds than on non-surface backgrounds. As explained in
Sec. 5.1.5, this is due to systematic uncertainties in the modeling of the volt-
age cut and the variations in the voltage map for the surface backgrounds;
the voltage cut and map modeling systematics do not arise for the other
backgrounds which are more homogeneously distributed throughout the de-
tector. Whereas the shapes of the non-surface backgrounds have only small
freedom to change in the likelihood fit (due to efficiency and resolution pa-
rameters), we allow the surface background shapes to shift significantly if
the data pulls the surface distributions away from the mean distributions.

This shape-shifting and rate-shifting is implemented with a “morphing
parameter,” which acts as a fit parameter in the likelihood. With three
curves giving the mean, 1σ upper, and 1σ lower event densities of a back-
ground component, the morphing parameter m is implemented as:

ρ(E,m) =

{
ρmed(E) +m× (ρup(E)− ρmed(E)) m > 0
ρmed(E) +m× (ρmed(E)− ρlow(E)) m < 0

(5.7)
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Figure 5.4: (left) Uncertainty on the shape of the housing background.
(right) The uncertainty on the shape and normalization of the housing back-
ground, as controlled by a single morphing parameter that is given by a single
color.

where m=0 results in the mean curve, and m=1 and m=−1 result in the
1σ upper and 1σ lower curve respectively, and other values of m result in a
linear combination of two of the curves. The ρlow, ρmed, and ρup variables
are shown in Fig. 5.4 left as the lower, middle, and upper curves. Figure 5.4
right shows the effect of the morphing parameter, where the color legend
is yellow: m=1, black: m=0, blue: m=−1. The event density spectra are
normalized to the expected number of events for that background (from the
normalization based on the alpha count study, discussed in Sec. 5.1.5). For
example, for the Ge surface spectrum:∫

ρGe(E) dE = NGe. (5.8)

While the morphing parameters are designed to keep track of the uncer-
tainty due to the voltage cut and voltage map systematics, we can addition-
ally incorporate the uncertainty on the surface background normalization
due to the alpha counts measurement. Incorporating this extra uncertainty
has the effect of increasing the uncertainty on the morphing parameters.

From the alpha study, the total number of events we expect, with no cuts
applied, from each surface component is NGe = 5.7 ± 1.5, NHS = 11.0 ±
0.68, NTL = 28 ± 3.0 with correlations ρGe−HS = −0.35, ρGe−TL = −0.18,
ρHS−TL = −0.19. The morphing parameters, because of their connection to
an efficiency systematic uncertainty, are 100% correlated. For example, if
the voltage cut from the surface background modeling procedure were to be
looser than its approximated central value value by 1σ, then all the spectra
would shift up together. We use Monte Carlo techniques to combine the
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uncertainty from the alpha study and the morphing parameters, and the
resulting matrix describing the covariance between numbers of events from
the germanium, housing, and top lid is:

V =

 8.9 28.6 25
28.6 149 107
25 107 111

 . (5.9)

With the uncertainties from the alpha study and the morphing parame-
ters combined into a covariance matrix for the number of surface background
events from different sources, we can propagate the correlated uncertainty to
the morphing parameters. Following standard error propagation rules, and
with variable names m1 = mGe, m2 = mHS , m3 = mTL; and N1 = NGe,
N2 = NHS , N3 = NTL with a covariance matrix V between the three vari-
ables, we can determine the covariance/variance between the variables, for
example between m1 and m2, as:

Mm1,m2 =

3∑
i,j

∂m1

∂Ni

∂m2

∂Nj
|x=µ × Vij , (5.10)

where the relationship between a morphing parameter and a corresponding
number of events is known and displayed in Fig. 5.4.

This gives the following covariance matrix between morphing parame-
ters:

M =

 1.24 0.89 0.91
0.89 1.04 0.87
0.91 0.87 1.06

 . (5.11)

With the morphing parameters as fit parameters in the likelihood, they
are constrained with a three-dimensional Gaussian whose variances/covariances
are given by the M matrix above. Explicitly, the constraint is given by:

lnLM Constraint = −1

2

[ 3∑
i=1

3∑
j=1

M−1
ij (mi − µmi)(mj − µmj )

]
(5.12)

where µm is the mean of the constraint and m are the fit parameters.

5.2.2 Likelihood Function

We employ the unbinned extended maximum likelihood method to fit our
signal and background models to the data. The signal and background
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models discussed above are incorporated as a product of three likelihoods:
a term to allow the fitted number of signal and background events to have
Poissonian fluctuations around the observed number of events, a term with
the signal and background distributions to discriminate between signal and
backgrounds, and a term that constrains certain parameters with prior in-
formation:

L = LPoiss. × Lenergy dist. × LConstr.. (5.13)

The data input into the likelihood are the number of events passing all
cuts, as well as the energies of those events. Taking the logarithm of likeli-
hood, and dropping constant terms, which are unnecessary for maximizing
the likelihood, we obtain, for the LPoiss. and Lenergy dist. terms:

ln(LPoiss.) + ln(Lenergy dist.) = −
[
νχ +

∑
b

νb +
∑
sb

νsb

]
+

N∑
i=1

ln
[
νχfχ(Ei, ~n)

+
∑
b

νbfb(Ei, ~n)

+
∑
sb

ρsb(Ei,msb, ~n)
]

(5.14)

The νχ is the expected number of events from the WIMP component,
νsb are expected event numbers from the surface background components,
and νb are expected event numbers from the non-surface backgrounds. The
f terms are PDFs for the energy of the WIMP distribution and the non-
surface background distributions. The ρ terms are the event densities, as a
function of energy, of the surface backgrounds, which depend on the mor-
phing parameters m. The ρ variables have normalization of events/energy
such that if they are integrated over energy the result is a number of events
coming from that surface background, as described in Eq. 5.8. Therefore,
the ρ terms have the same units as the νbfb terms in the same sum. The ~n
is a vector of efficiency and resolution parameters that allow the shapes of
the fb and ρ shapes to shift to within a prior determined range that is rep-
resentative of the uncertainty of the efficiency and resolution. The iterator
i is over the N events that are being fitted.

The full constraint term in the likelihood is shown in Eq. 5.15. Be-
cause the Lindhard k constraint is in 1 dimension it is instructive to step
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through that constraint, and then apply analogously the same idea in higher
dimensions when thinking about the other constraints. The Lindhard k is
a parameter in the fit that can vary in order to maximize the likelihood,
but this constraint applies a penalty (a negative contribution to the likeli-
hood value) if k is different than the central value of the prior on k. This
central value is given by µk = 0.157, as given by Lindhard theory applied
to germanium. For the form of the constraint, we use a Gaussian prior.
Therefore, the magnitude of the penalty is determined by the uncertainty
on µk, which is given by σk, and is estimated from auxiliary measurements
of the ionization yield in germanium [73]. Because these measurements do
not provide precise information about the NR ionization yield, particularly
at low energy, we use a weak constraint on k by choosing σk = 0.05.

ln(LConstr.) =− (k − µk)2

2σ2
k

− 1

2

[ 3∑
i,j

(ei − µei)E−1
ij (ej − µej )

]

− 1

2

[ 6∑
i,j

(ri − µri)R−1
ij (rj − µrj )

]

− 1

2

[ 3∑
i,j

(mi − µmi)M−1
ij (mj − µmj )

]
.

(5.15)

We constrain the three parameters describing the signal efficiency, ~e,
with a 3D Gaussian prior using the results of Sec. 4.9. The center of the 3D
Gaussian is given by the best-fit values of the parameters ~µe, and its shape
is determined by the covariance matrix between best-fit values, given by E.
We similarly constrain the resolution parameters, ~r, using the 6D Gaussian
prior from the resolution model of Sec. 5.1.1, with best-fit resolution model
values of ~µr and covariance matrix R. Because the Run 3a and Run 3b de-
tector resolutions were modeled independently, R contains zeros in elements
linking the two periods. The morphing parameters, ~m, which incorporate
systematics of the surface backgrounds, are constrained in the final term of
Eq. 5.15. The expected values for the morphing parameters, ~µm, as well as
the covariance matrix (M) between them, determine the constraint.
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Variable Constraint Parameter Boundary

e (efficiency vector) 3D Gaussian All variables > 0
m (morphing vector) 3D Gaussian All event densities > 0
r (resolution vector) 6D Gaussian All variables > 0
k (Lindhard) 1D Gaussian 0 < k < 0.3 (3σ from µk)
σχ (DM cross section) No Constraint σχ > 0

Table 5.6: Constrained or bound variables in the likelihood fit

5.2.3 Limit-Setting Approach

For a given WIMP mass we test the hypothesis that a WIMP signal with
cross section σχ exists in the data. The PLR method allows us to calculate
the probability of observing a σχ signal strength when the hypothesis is
true. Then we scan over σχ to calculate the probability (p value) of different
signal strength hypotheses, and then quote a cross section sensitivity when
the probability of the signal hypothesis equals 0.1. This is equivalent to
quoting a cross section when the signal hypothesis is rejected at the 90%
confidence level (CL).

The first step in the limit setting procedure is to compute the q statistic
for the dataset, for a certain signal strength hypothesis, σχ:

qσχ =

{
−2lnλ(σχ) σ̂χ < σχ

0 σ̂χ > σχ
, (5.16)

where λ is defined as

λ(σχ) =
L
(
σχ,

ˆ̂
θ
)

L
(
σ̂χ, θ̂

) . (5.17)

The numerator of λ(σχ) is the likelihood of a fit that has constrained the

signal component to the test hypothesis value σχ, and
ˆ̂
θ are the values of

the nuisance parameters that maximize the likelihood given the constraint
on σχ. The denominator of λ(σχ) is the likelihood with no constraints—the
cross section σχ is permitted to float, along with the nuisance parameters,

and the values that maximize the likelihood are labeled σ̂χ and θ̂.
To provide some sense for these statistical variables, λ(σχ) is a num-

ber between 0 and 1, and λ(σχ)=1 corresponds to the most test-signal-
like outcome—the best fit signal value of σχ equals the hypothesis value of
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Figure 5.5: (left) Likelihood fit, to a pseudo-dataset, with WIMP cross
section freely floating. (right) A likelihood fit, to the same pseudo-dataset,
with WIMP cross section clamped to σχ = 2.3×10−42cm2. On both plots,
the best fit number of background events from the different backgrounds are
shown in the legend, and the likelihood values are shown in the plot title.

σχ. The λ(σχ)=1 case corresponds to qσχ=0. Signal hypotheses for which
σ̂χ > σχ are compatible with the data when calculating upper limits. There-
fore qσχ is set to 0 in these cases, which is the value that indicates the highest
degree of compatibility between the signal hypothesis and the data.

Using this likelihood ratio statistic all parameters in the likelihood other
than σχ (i.e. the systematic uncertainty parameters and the numbers of
background events) are profiled out as nuisance parameters by maximizing
L as a function of these parameters with σχ held constant.

An example of the signal-rejection power of the likelihood ratio test is
demonstrated in the following plot which shows fit results of background
models and a 5GeV/c2 DM signal to a pseudo-dataset. The left plot shows
a fit representing the denominator of λ(σχ) with the WIMP cross section
floating, giving a lnL value of 2773.577. The right plot shows a fit rep-
resenting the numerator of λ(σχ) with the WIMP cross section clamped to
2.3×10−42 cm2, giving a lnL value of 2772.737. Therefore, λ(σχ) = ∆ lnL =
−0.84 and qσχ = 1.68. Based on this qσχ value we can assign a rejection
confidence level (CL) to a 5GeV/c2 DM particle with σχ=2.3×10−42 cm2

existing in this data set. We now discuss how to calculate the rejection CL.
After obtaining the qσχ,obs statistic for a data set, the probability of

obtaining that qσχ,obs value assuming the signal hypothesis is true (i.e. that
a signal of size σχ exists in the data) is given by

pσχ =

∞∫
qσχ,obs

f(qσχ |σχ) dqσχ . (5.18)
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Figure 5.6: An example qσχ,obs relative to a MC produced f(qσχ |σχ) distri-
bution, as well as the theoretical (1/2)× (δ(0) + χ2) distribution.

Here f(qσχ |σχ) is the probability distribution function of qσχ when the test
hypothesis is true. We reject σχ at 90% confidence when pσχ = 0.1.

Computing f(qσχ |σχ) requires significant amounts of computation be-
cause the distribution of qσχ values must be approximated by simulating and
fitting at least hundreds of pseudo-datasets containing background + signal
components. To avoid calculating f(qσχ |σχ), Wilks’ theorem [140] says that
this distribution asymptotically approaches a mixture of a delta function at
zero and a chi-square distribution with one degree of freedom, with the delta
function δ(0) and the χ2

dof=1 distribution each having a weight of 1/2. In the
text below we will refer to this mixture of distributions as (1/2)×(δ(0)+χ2).
If it can be shown that this asymptotic behavior is realized for the CDMSlite
R3 likelihood function then f(qσχ |σχ) = (1/2)× (δ(0)+χ2) can be assumed.
We calculate f(qσχ |σχ) by fitting pseudo-datasets of signal + background
and confirm that these distributions converge to the distribution predicted
by Wilks’ Theorem. One such of these checks is shown in Fig. 5.6, and so
we use the theoretical distribution in sensitivity and limit calculations.

The CLs Method

A slight modification is made to the above formalism of setting a 90% CL
limit. This modification is used in order to protect against the possibility
of the profile likelihood method excluding a WIMP cross section to which
the experiment is not sensitive in the case that the background statisti-
cally fluctuates to a low number of events. The method, called the CLs

method [141], gives a slightly higher signal cross section for the 90% exclu-
sion than would otherwise be obtained, and in this sense it is conservative.
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The method adds an additional integral into the denominator of the p-value
that is the probability of q to be larger than the observed test statistic under
the background-only hypothesis:

pσχ,CLs =

∞∫
qσχ,obs

f(qσχ |σχ) dqσχ

∞∫
qσχ,obs

f(qσχ |σχ = 0) dqσχ

(5.19)

This has the effect of making pσχ,CLs greater than pσχ , which will require
a higher σχ hypothesis to be tested in order to reach pσχ=0.1 and exclude
that hypothesis at 90% CL.

5.3 Results

The best-fit value of σχ for the DM masses considered in this analysis is
found to be well below the experiment’s sensitivity, and so we choose to set
an upper limit.

5.3.1 Background Model Goodness of Fit

After unsalting the R3 data set, we test whether the background model
likelihood is a good fit to the data. The likelihood fitting procedure described
in Sec. 5.2 provides no information as to the goodness of fit (GOF) of the
model to the data, and therefore we define a procedure to evaluate the GOF
that outputs a probability (i.e. a p-value) for the data on the assumption
that the model is correct. We use the Cramér-von Mises GOF statistic [142]
because it does not require binning of the data, overcomes some deficiencies
of the more common KS test, yet is still relatively simple compared to some
alternative GOF metrics. The Cramér-von Mises statistic CVM is defined
as:

CVM = n

∫ [
Fn(x)− F (x)

]2
P (x)dx (5.20)

where Fn(x) is the empirical cumulative distribution function (CDF) of the
data, F (x) is the CDF of the model’s fit to the data, and P (x) is the PDF
of the model’s fit to the data. The n variable is the number of data points.
Also, since our model is a function of energy, the x variable is energy. A
larger Cramér-von Mises statistics corresponds to a worse fit.
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We use Monte Carlo to calculate the confidence level that the Cramér-
von Mises statistic indicates that the data comes from the background
model. MC distributions of the goodness-of-fit statistic are calculated using
fits to fake data sets that have been generated according to the background
model. This custom MC approach allows us to take into account the sys-
tematic uncertainties in the background model. The steps of the procedure
are:

1. Fit the real data and determine best fit values and posterior distribu-
tions for the model parameters.

(a) This fit and the posterior distributions are shown in Fig. 5.10.

2. Calculate the Cramér-von Mises statistic for the fit to the real data.

3. Generate 1000 pseudo-experiments based off the fit to the real data.

(a) For the number of events from each background, sample from a
Poissonian distribution with mean centered at the best fit values
from step (1).

(b) For the other nuisance parameters, sample from the posterior
distributions from step (1).

(c) Fit and calculate the Cramér-von Mises statistic for each pseudo-
experiment

4. Calculate the fraction of the pseudo-experiments’ Cramér-von Mises
statistics that are larger than the one for the real data from step (2).
This fraction is the p-value.

Prior to unblinding, we agreed on a p-value threshold of 0.05, below
which we would investigate inaccuracies in the background model, abandon
the limit obtained with the profile likelihood method, and resort to the more
conservative optimum interval limit-setting technique.

As shown in Fig. 5.7, the GOF procedure gives a p-value of 0.988 for
the hypothesis that the data comes from the background model, indicating
a particularly good fit. Two varieties of checks were performed to ensure
that the above procedure was unbiased. First, the procedure above was
repeated but removing step (3b) and instead, when creating the pseudo-
datasets, setting the systematic nuisance parameters to the best fit values
we found in step (1). This changed the p-value only slightly, from 0.988 to
0.986, indicating that the high p-value is not a result of an overestimation of
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5.3. Results

Figure 5.7: Cramér-von Mises Statistic of the fit to the data (red line) and
1000 pseudo experiments.

our systematic uncertainties. Second, pseudo-experiments themselves were
tested as if they were the real data set (i.e. they were fit with the likeli-
hood and the Cramér-von Mises statistic was determined for that fit, and
subsequently a set of pseudo-experiment based on that fit were created and
fit, etc.). This procedure, carried out 7 times, did not show any bias in the
obtained p-value scores, which were between 0.053 and 0.85.

5.3.2 Exposure of Salt

With the analysis (cuts, background models, likelihood function) frozen,
the dataset was unblinded by exposing the salt in the dataset. Followup
checks were performed on the salt and confirmed that it was inserted at the
intended magnitude and with the intended energy and radial distribution,
as shown in Fig. 5.8.

The passage fraction of the salt as a function of energy from 0-2keVee was
examined to check the expectation that the salt passage fraction matched,
to within uncertainties, the estimated signal efficiency. The red error bars
in Fig. 5.9 left show the salt passage fraction with all cuts (DQ efficiency
cuts + multiples + muon veto + radial) applied. Relative to the estimated
signal efficiency, the passage fraction is for salt is systematically lower. The
multiples cut is the largest reason for the reduced salt passage fraction. The
multiples cut and muon veto cut passage fraction of the salt is the largest
discrepancy with our estimated signal efficiency, since both of these cuts were
estimated to be >98% efficient for signal, while they are ∼ 80% efficient for
salt.

The reason why the multiples cut has a lower passage fraction of salt than
we estimated for the signal is that the replaced events come from background
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Figure 5.8: (left) The R3 final spectrum with all cuts applied, and with salt
included and highlighted). (right) The distribution of salt (with no cuts
applied) highlighted in the energy vs. ξ radial parameter plane, with the
real data shown in the background.

(i.e. α, β, γ recoils), and these sources are expected to pass the multiples
cut with lower efficiency than a DM signal. This is explicitly shown in
Fig. 5.9 center, where the unsalted dataset is loaded and the events that were
replaced by salt are selected. 73/393 ' 19% of these events are identified
by the multiples cut. When the waveform of these events is replaced with a
salted waveform (i.e. a good low energy pulse) the event is still likely going
to be identified as a multiple because the waveform information on the other
detectors is not changed in the salting algorithm. This 19% multiples rate
is consistent with Fig. 5.9 left.

Figure 5.9 right shows the salt passage fraction with just the DQ effi-
ciency cuts and radial cut applied to the salt in pink. Omitting the multiples
and muon veto cuts removes the systematic 1.5–2σ disagreements. This is
a confirmation that the salting procedure was successful, as it assumed a
distribution in event ntuple parameter space that resembled a DM signal.

5.3.3 Final Spectrum Fit

The final Run 3 spectrum after application of all selection cuts is shown
in Fig. 5.10. The main features are the 71Ge electron-capture L- and M -
shell peaks at 1.30 and 0.16 keVee respectively. Events contributed from
backgrounds other than 71Ge exist between the peaks and are well mod-
eled. We do not observe a population of events below the M shell, which
is consistent with the steep decrease of the signal efficiency in this range
and consistent with the expectations from the background model. Poste-
riors for the number of events contributing each background are shown in
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Figure 5.9: (left) The salt passage fraction with sequential application of
cuts (shown in the legend) compared to the signal efficiency estimate. (cen-
ter) The energy spectrum of events, in the unsalted dataset, selected to be
replaced by salt events. Roughly 19% of them were multiples, consistent
with the passage fraction given by the left hand figure. (right) The salt
passage fraction, but without the multiples and muon veto cut.

Fig. 5.10 right. In the figure axes labels, m1, m2, m3 corresponds to the
morphing parameters for the Ge, Housing, and Top Lid surface backgrounds.
As expected, a strong covariance is observed between the Compton and 3H
background components, which in this energy range do not contain suffi-
ciently distinct spectral features to remove their degeneracy in the fit. The
surface background components are strongly correlated through the prior
constraint covariance matrix, M, described in Sec. 5.2.

We find that the surface background component covariances from the
likelihood fit match the prior constraint covariances, shown in the top row
of Fig. 5.11, indicating that these 0.07–2.0 keVee data do not provide any
additional information on the surface background. Figure 5.11 also shows
that all of the systematic uncertainty parameters that were constrained in
the likelihood (i.e. resolution and efficiency parameters) are within the range
to which they were constrained by the prior. Additionally, the posteriors
have similar widths as the priors indicating that the data are not providing
additional information for these parameters.

5.3.4 Background Rates

We calculate the average background rates of single-scatter events between
the 71Ge peaks, corrected for efficiency, as shown in Table 5.7. The Run 3
background rate is higher than Run 2, in line with the expectation of the
higher surface background for an endcap detector (T2Z1) relative to T5Z2.
T5Z2 was surrounded on both of its faces by the two adjacent detectors,
whereas T2Z1 was the highest detector in the tower and therefore had one
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Figure 5.10: (top) Background best fit amplitudes overlaid on the Run 3
unsalted data. “Sf” is an abbreviation for “surface”. (bottom) 1D and 2D
posterior distributions for the number of events (or morphing parameter in
the case of surface backgrounds) contributing from each background. By
posterior, we do not mean to imply that these are the results of a Bayesian
analysis; rather, these are the fit results from the likelihood, with asymmet-
ric uncertainties determined with a Markov-chain Monte Carlo sampling
algorithm.
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5.3. Results

Figure 5.11: Comparing prior constraints with fit results of the maximum
likelihood for the efficiency, morphing, and resolution parameters. The sim-
ilar variance of the prior and posteriors indicates that the data are not
providing additional information for these systematic uncertainty parame-
ters, and the similar mean indicates that our signal efficiency and resolution
model parameters are in agreement with the data.
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Range Run 2 Rate Run 3 Rate

[keVee] [keVee kg d]−1 [keVee kg d]−1

0.2–1.2 1.09± 0.18 1.9± 0.3
1.4–10 1.00± 0.06 1.3± 0.1
11–20 0.30± 0.03 0.71± 0.07

Table 5.7: Average single-scatter event rates for energy regions between the
activation lines in Run 2 and Run 3, corrected for efficiency. All errors
contain ±

√
N Poissonian uncertainties, and the lowest energy range values

additionally include uncertainty from the signal efficiency.

face exposed to the top lid copper. It is also expected from T2Z1’s position
in the tower that the ability to identify and remove multiple scatters is
diminished. Additionally, Run 3 had fewer other active detectors in the full
array relative to Run 2. Since the active detectors are used to identify the
multiple scatter events, this factor would also reduce the efficiency of the
Run 3 multiples cut. Therefore, a higher fraction of multiple scatter events
could be passing the multiples cut and contributing to the event counts in
the table.

5.3.5 Sensitivity Estimate

Prior to unsalting the data, we calculated the 90% CL sensitivity of the
Run 3 analysis to a DM signal based on projected background rates in this
analysis’s energy region of interest (ROI), 0.07–2.0 keVee. The sensitivity
calculation also uses the likelihood framework presented in Sec. 5.2. To esti-
mate the background rates in the ROI, we measure them in the 5–25 keVee

range and extrapolate the rates to lower energy. We choose 5 keVee because
salt was not inserted above this energy and because the DM signal con-
tribution above this energy for DM masses < 10 GeV/c2 is expected to be
negligible. Also, because 5 keVee is below the lowest K-shell energy of the
EC isotopes considered, all background components are constrained in this
range. We perform a maximum likelihood fit, using the likelihood defined
in Eq. 5.13 but without the DM signal. We also omit the resolution and ef-
ficiency systematic uncertainties because those extra terms are unnecessary
when fitting the 5–25 keVee background spectrum. This fit provides best-fit
values of, as well as covariances between, background rates in the 5–25 keVee

range for the nine background components. The expected background in the
ROI can directly be calculated from the best fit in the 5–25 keVee range.
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The uncertainty is determined from the covariance matrix of the fit.
Background-only pseudo-experiments are then generated by sampling

from the nine different background distributions. The number of events
thrown for each background component is randomized, first by sampling
from the 9D Gaussian distribution provided by the 5–25 keVee maximum
likelihood fit and second by adding a Poissonian fluctuation to the sampled
value. The 90% CL PLR limit, using the CLs technique, is calculated for
500 of these pseudo-experiments, and the resulting ± 1σ bands are shown
as the red band in Fig. 5.12.

In addition to determining parameters for generating the pseudo-experiments,
the 5–25 keVee fit provides constraints on the surface background morphing
parameters (the µmi of Eq. 5.15). While this fit used a prior constraint
centered at 0 for all morphing parameters, the respective posteriors peaked
at −0.19, −0.2, and −0.25 for the germanium, top lid, and housing surface
background locations respectively. This indicates a slightly lower surface
background rate than predicted by the alpha decay study. The 5–25 keVee

fit also slightly reduced the uncertainty on the morphing parameters, as
given in the following covariance matrix:

M =

 0.570 0.419 0.420
0.419 0.572 0.389
0.420 0.389 0.485

 . (5.21)

These updated central values for the constraint were used in the likelihood
for both the sensitivity estimate and the final limit, along with the updated
covariance matrix for the morphing parameters.

5.3.6 DM Limit

Figure 5.13 shows the final CDMSlite Run 3 limit calculated with the spec-
trum in Fig. 5.10. From 2.5–10 GeV/c2 we find a factor of 2–3 improvement
in the excluded DM-nucleon cross section over the CDMSlite Run 2 optimum
interval analysis [143]. This improvement is achieved despite the smaller
exposure (36 vs. 70 kg-days) and higher background rate in Run 3, demon-
strating the discrimination power of the PLR method. Below 2.5 GeV/c2,
we exclude little to no additional parameter space because the effective en-
ergy threshold for this analysis is slightly higher than that for CDMSlite
Run 2.

176



5.3. Results

Figure 5.12: (left) R3 1σ sensitivity band and PLR limit (with R2 OI limit
overlaid)

Figure 5.13: The CDMSlite Run 3 90% CL PLR limit (this result, solid
black) on the spin-independent WIMP-nucleon cross section, along with
the ± 1σ and ± 2σ sensitivity bands (green and yellow respectively). The
CDMSlite Run 3 optimum interval limit (dashed grey) and Run 2 (red) op-
timum interval limit [143] are overlaid. Examples of limits from other detec-
tor technologies are overlaid: DarkSide-50 2018 No Quenching Fluctuations
(magenta) [84]; PandaX-II 2016 (blue) [43]; PICO-60 2017 (orange) [144];
CRESST-II 2016 (cyan) [94]; CDEX-10 2018 (purple) [145].
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Chapter 6

Conclusion and Future
Outlook

The ability of the CDMSlite operating mode to improve the SuperCDMS
detectors’ sensitivity to low mass DM is clear from the exclusion limits in
Fig. 5.13. The CDMSlite Run 1 result first demonstrated the promise of
the Neganov-Trofimov-Luke (NTL) effect to lower the detector threshold,
while CDMSlite Run 2 used an improved understanding of the detector
noise environment and electric field to reduce backgrounds and further lower
the detector threshold, producing world-leading sensitivity to DM particles
between 2 and 6 GeV/c2. Then in this thesis, the CDMSlite approach was
taken a step further.

In Chapter 4 and Chapter 5, we introduced new analysis methods that
moved CDMSlite from an exclusion-only analysis to one with discovery
potential, in addition to improving the low-mass sensitivity of CDMSlite.
Specifically, the results demonstrate successful modeling of radioactive back-
grounds in CDMSlite detectors down to low energies, as well as the dis-
crimination power of a profile likelihood fit to set strong limits on a DM
signal even in the presence of irreducible backgrounds. A number of anal-
ysis developments enabled this approach, including improved rejection of
instrumental backgrounds using detector-detector correlations in a boosted
decision tree, removal of events at high radii with misreconstructed energies
by an improved fiducial volume cut, and Monte Carlo modeling of surface
backgrounds in the detector.

The SuperCDMS collaboration is currently constructing a new experi-
ment, SuperCDMS SNOLAB, which will use the NTL effect to reach lower
thresholds in detectors designed specifically for high-voltage operation [97,
146]. The analysis developments in the CDMSlite Run 3 analysis, in particu-
lar the profile likelihood approach, are planned for future SNOLAB analyses.
Because our use of the profile likelihood method for CDMSlite Run 3 was
the first time it had been used in a search for DM in a CDMSlite detector,
our results show that employment of such a method is possible even when
the analysis is pushing to the limits of the detector threshold.
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In addition to the CDMSlite Run 3 analysis, the detector characteriza-
tion results presented in Chapter 3 provided important information for the
projected sensitivity of the SuperCDMS SNOLAB detectors. Namely, the
improved baseline resolution measured on prototype lower transition tem-
perature (Tc) detectors confirmed resolution extrapolations for the lower Tc
detectors being fabricated for SuperCDMS SNOLAB. The number of detec-
tors, as well as their projected resolution, is given in Table 6.1.

The projected DM sensitivity of the SuperCDMS SNOLAB experiment
can be calculated using the values from Table 6.1 as well as the background
rate projections detailed in Ref. [97]. By moving to the deeper laboratory
at SNOLAB, the flux from cosmogenic muons and cosmogenically produced
neutrons will be reduced by approximately 2.5 orders of magnitude relative
to Soudan. The neutron background is not expected to be significant relative
to electron recoil backgrounds, and the decays from 3H are expected to
contribute the highest rate in Ge detectors. The projected sensitivities,
calculated using the conservative optimum interval method, are shown in
Fig. 6.1.

Looking towards the future of DM direct detection, the dotted yellow
line in Fig. 6.1 is the region of parameter space where the solar neutrino
coherent elastic scatter rate is expected to begin to mask the interaction
rate from DM particles. These nuclear recoil events would look like DM
events. Of course it is possible that particle DM is discovered before this
coherent neutrino scattering “floor” is reached, but if it is not then the
coherent neutrino scattering will constitute a new, difficult background to
discriminate against. Pushing down to this floor will mark an important
benchmark for direct detection, and pushing past it will require innovative
new detector designs.
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Ge (iZIP) Si (iZIP) Ge (HV) Si (HV)

Number of detectors 10 2 8 4
Total exposure (kg·yr) 56 4.8 44 9.6
Phonon resolution (eV) 50 25 10 5
Ionization resolution (eV) 100 110 - -
Voltage Bias (V) 6 8 100 100

Table 6.1: The projected exposures and detector parameters for the four
types of SNOLAB detectors: Ge iZIP, Si iZIP, Ge HV, Si HV. The exposures
are based on 5 years of operation with 80% live time. The HV detectors do
not have ionization sensors. The arrangement will be 4 towers of 6 detectors
each. Table reproduced from Ref. [97].

Figure 6.1: The dashed lines show the projected 90% exclusion sensitivity
of the SuperSCDMS SNOLAB experiment, calculated using the optimum
interval method. The y axis is the spin-independent WIMP-nucleon cross
section. The solid lines show the current 90% from the CRESST-II [94], Su-
perCDMS [126, 143], and LUX [147] experiments. The dotted yellow line is
the region of parameter space where the solar neutrino coherent elastic scat-
ter rate begins to mask the interaction rate from DM particles, as calculated
in Ref. [148]. Figure from SuperCDMS approved public plots.
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F. Pröbst, F. Reindl, K. Schäffner, J. Schieck, S. Schönert, W. Sei-
del, L. Stodolsky, C. Strandhagen, R. Strauss, A. Tanzke, H. H.
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Appendix A

Voltage Scan Calibration
Results

A.1 Linearity

Calibration studies from CDMSlite Run 1 and Run 2 indicated that the
energy scale of the CDMSlite detectors was more complex than the simple
Neganov-Trofimov-Luke model (Eq. 2.9) and that the total phonon amplifi-
cation was not exactly linear as a function of bias voltage, Vb. These studies
also indicated that the ionization and phonon collection of the CDMSlite
detectors differed from the iZIP detectors and therefore the energy scale
differed between the two detector configurations.

Therefore, prior to the CDMSlite Run 3 analysis, we performed a ded-
icated study of the CDMSlite detectors’ energy scale as a function of bias
voltage. The 10.4 keVee and 1.3 keVee ER events were used to calibrate the
energy scale of both the T2Z1 and T5Z2 detectors at a variety of voltages.
When first processing the data, the calibration used was the iZIP calibra-
tion which was determined with the detector at 4V. Fig. 2.14 and A.1 show
the reconstructed energy of the 10.4 keVee and 1.3 keVee peaks for T5Z2
detector voltages of 0V, 30V, 50V, and 70V.

A.2 Significance of Calibration Systematics

The bias scan data can be better explained with slight modifications to sim-
ple Luke gain scaling assumption: Ept = Er(1 + eVb

ε ). If there is suppressed
collection of recombination phonons in CDMSlite, but we still assume 100%
collection of recombination phonons, how does this affect the ER and NR
energy scale? If there is impact ionization10 that is ignored, how does this

10Impact ionization is a process by which e−/h+ pairs in the detectors can ionize ad-
ditional e−/h+ pairs, thereby creating additional Luke phonons with an energy that is
non-linear as a function of the voltage across the detector. While this is a second-order
process, as seen by the fact that the total phonon energy scale is to first order linear with
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A.2. Significance of Calibration Systematics

Figure A.1: (left) The zoomed-in version of the left hand plot highlights the
discrepancy between the expected, by extrapolation, location of the K-shell
peak at 0 V. (right) The location of the K- and L- shell peaks as a function of
detector voltage. The higher voltage peaks (30 V, 50 V, and 70 V) are linear
to within uncertainty, but there is a deviation from linearity at 0 V. The
overall energy scale (y axis) has used a calibration constant for the detector
obtained at 4 V, though the overall scaling of the y axis is irrelevant when
checking for linearity.

affect the ER and NR energy scale? We now introduce a few variables
to model these effects. The true recombination phonon collection fraction
is given by fRC,T . The true Luke phonon collection fraction is given by
fL,T . Fortunately, neglecting the two effects above will have no effect on
the electron recoil energy scale, as discussed below. In the NR energy scale,
neglecting the effects will only introduce a slight bias. The plots in Fig. A.2
show the ratio between the measured NR energy, Enr,M , and the true NR en-
ergy, Enr,T , as a function of fRC,T and fL,T . We used an example ionization
yield of Y (Er) = 0.2 and assumed ε = 3 eV.

Electron Recoils

Due to the ratio of Egap = 0.79eV to Ecreate = 3eV in Ge, 74% of an
electron recoil’s energy, Er, goes into primary phonons. The other 26% of
energy goes into ionization, which either recombines immediately, emitting
the energy as phonons (when Vb = 0), or drifts across the crystal emitting
energy as Luke phonons (Eluke = neheVb), until the ionization recombines

the voltage, it has been observed in CDMS style detectors[149].
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A.2. Significance of Calibration Systematics

Figure A.2: Large systematics in Luke phonon collection (15%) and recom-
bination phonon collection (50%) would contribute at most to a ∼3% error
in the nuclear recoil energy scale. The recombination phonon error becomes
negligible at high detector bias. Also the error decreases at higher detector
voltage, Vb, as the total phonon energy becomes more correlated with the
ionization.
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A.2. Significance of Calibration Systematics

at the electrodes and emits the recombination energy as phonons back into
the crystal.

The bias scan data can be better explained with slight modifications to
the above process. One explanation is that recombination phonons are never
being collected. At 0V charges could be trapping and never recombining.
At higher voltages it’s possible that recombination phonons are not being
collected because (1) phonons created at the electrodes aren’t emitted back
into the crystal or (2) perhaps the charges trap near the surface and never
recombine. We can treat this as a recombination phonon suppression, fRC,T ,
which is < 1.

An equally consistent explanation of the bias scan data is that impact
ionization is occurring at the higher voltages, where drifting ionization de-
neutralizes an impurity, creating more ionization and therefore excess Luke
phonons. We can treat this as a preferential collection of Luke phonons in
the energy scaling, where fL, T > 1.

These effects modify the total phonon energy scale. With full recombi-
nation phonon collection and without impact ionization the total phonon
energy scale becomes

Ept = Er(1 +
eVb
ε

) (A.1)

while with suppressed recombination phonon collection and impact ioniza-
tion it becomes

Ept = Er(0.74 + 0.26× fRC + fL
eVb
ε

) (A.2)

At a certain voltage Vb, we measure a calibration constant, aM , that
scales an ADC value to the total phonon energy, Ept. aM is typically esti-
mated given an electron recoil Er of known energy and assuming the energy
scale of Eq. A.1:

Ept,M = aMADC, (A.3)

aM =
10keV(1 + eVb

ε )

ADC|10keV
. (A.4)

If Eq. A.1 is an incorrect energy scale, and instead the true energy scale
is given by Eq. A.2, then the true calibration constant, aT , would be differ-
ent than aM (making Ept,M incorrect). The true calibration is denoted by
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subscript T :

aT =
10keV(0.74 + 0.26× fRC + fL

eVb
ε )

ADC|10keV
. (A.5)

However, when converting from the total phonon energy scale to the
electron recoil scale, if a mistake is done the calibration, that mistake is
undone and the correct electron recoil energy is still obtained. Below we
compare the measured (“M”) electron recoil to the true (“T”) electron recoil
and see that they are equivalent:

Er,M =
Ept,M

1 + eVb
ε

=
aMADC

1 + eVb
ε

=
10keV

ADC|10keV
ADC

(A.6)

vs.

Er,T =
Ept,T

(0.74 + 0.26× fRC + fL
eVb
ε )

=
aTADC

(0.74 + 0.26× fRC + fL
eVb
ε )

=
10keV

ADC|10keV
ADC.

(A.7)

The bias in the Ept,M energy scale, is “calibrated out,” and does not
introduce a bias in the ER energy scale.

Nuclear Recoils

For the nuclear recoil energy scale a small (∼1%) systematic is introduced
when a wrong assumption is made about recombination phonon collection
or impact ionization, which does not cancel out, because the CDMSlite
calibration is always done using electron recoils. The full recombination
phonon collection, without impact ionization, energy scale is given by

Ept = Enr(1 + Y
eVb
ε

) (A.8)
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while suppressed recombination phonon collection efficiency and impact ion-
ization is given by

Ept = Enr

[
(1− Y (0.26)) + fRCY (0.26) + fLY

eVb
ε

]
. (A.9)

When converting from total phonon energy to nuclear recoil energy, now
the presence of the ionization yield factor Y (Er) creates the small systematic
bias in the measured nuclear recoil Enr,M vs. the true nuclear recoil Enr,T .

Enr,M =
Ept,M

1 + Y eVb
ε

=
aM ×ADC

1 + Y eVb
ε

=
1

1 + Y eVb
ε

10keV(1 + eVb
ε )

ADC|10keV
×ADC

(A.10)

Enr,T =
aT ×ADC

(1− Y (0.26)) + fRCY (0.26) + fLY
eVb
ε

=
1

(1− Y (0.26)) + fRCY (0.26) + fLY
eVb
ε

10keV(0.76 + fL
eVb
ε )

ADC|10keV
×ADC

(A.11)
The aM and aT are the calibrations from the Electron Recoil section above.

The ratio of the measured NR energy to the true NR energy is given by:

Enr,M
Enr,T

=

[
(1− Y (0.26)) + fRCY (0.26) + fLY

eVb
ε

][
1 + eVb

ε

]
[
1 + Y eVb

ε

][
(0.74 + 0.26× fRC + fL

eVb
ε )
] . (A.12)

The dependence of this ratio on fL and fRC is shown in the contour plots in
Fig. A.2 at the beginning of this appendix. It shows that not accounting for
suppressed recombination phonon collection and not accounting for impact
ionization has a small effect on the NR energy scale.

Three different cases are shown explicitly here. We use a nuclear recoil
with Y=0.2, a detector voltage bias of 70V, and assume ε = 3eV.

1. With no impact ionization, fL = 1, but with fRC = 0, the measured
recoil energy is only 0.2% larger than the true recoil.

2. With fL = 1.1 (10% impact ionization), and with fRC = 0 the mea-
sured recoil energy is 0.99% smaller than the true energy.

3. With fL = 1.1 and with fRC = 1, the measured recoil energy is 1.2%
smaller than the true energy.
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